自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 机器学习实战学习笔记----无监督学习

一、未标注数据的分类 1、K-means算法 缺点:可能收敛到局部最优,并且在大规模数据上收敛较慢 初始随机生成K个质心,遍历所有数据点,计算到所有质心的距离,并将其分配到距离最近的质心所在的簇,然后更新质心,只要质心改变,就重复上述过程 2、后处理 可对K-means算法产生的簇进行后处理从而达到更好的分簇效果,有两种可量化的办法,选择距离最近的两个质心进行合并或选择合并后数据点距质心距离和增幅...

2019-08-06 09:24:17 116

原创 机器学习实战学习笔记----回归

标准线性回归:w=(X.T*X)^(-1)X.Ty 局部加权线性回归:W(i,i)=exp((xi-x)(xi-x).T/(-2.0k^2)) #W为对角矩阵 w=(X.TWX)^(-1)X.TW*y k越大越容易过拟合 岭回归:最先用于处理特征数大于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计 w=(X.TX+λI)^(-1)X.Ty #I为单位矩阵 需要对X,y进行标准化处理...

2019-08-05 16:17:49 168

原创 机器学习实战学习笔记----分类

K-近邻算法 优点:精度高、对异常值不敏感、无数据输入假定、简单有效 缺点:计算复杂度高、空间复杂度高、非常耗时 关键:对训练集到数据向量的距离进行排序,选出到数据向量最近的K个训练集向量,然后对K个向量标签出现的次数进行排序,出现次数最多的就是数据向量的预测标签 备注:需要对各特征进行归一化 决策树 优点:计算复杂度不高、输出结果易于理解、对中间值缺失不敏感、可将分类器存储在硬盘上 缺点...

2019-07-22 18:02:45 122

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除