POJ 1185 炮兵阵地 (状压dp)(棋盘dp)

这题和poj 3254很像,但是更复杂了一些

都属于棋盘里放东西,然后又各种各样的限制,然后求方案或者最大值

(1)上一道题距离要大于1,这道题是大于2。所以判断的时候变成

!(x & (x << 1) || (x & x << 2))

然后关于有效状态数,可以自己输入最大的数据,例如这道题就是n=10,然后输出状态数,就可以得到等于60

(2)这道题涉及到前两行的状态。一开始觉得这道题应该是和上一道题是一样的,设第几行和状态是什么就好了

但是这样的话就不能涉及到上上行的状态。因此状态要涉及到这一行和上一行,为什么不顺便把上上行也加进来呢?因为更新的时候用到i-1是可以多往上一行的。同理,如果是往上n行,就要在状态设计中有当前这一行和往上n-2行的状态。

(3)这道题求的是最大值。那么不一定是放到最后一行的答案。所以就要把所有情况都遍历一遍求答案。

(4)还有题目输入的时候,如果是H,就要标记把这一位标记为1,如果下标从0开始的话,就可以写为1 << (m - j - 1)

但是我发现直接写1 << j也可以,因为这样只是把图左右翻过来了而已,这道题只是求最大值,不是求具体的方案,所以对答案并不会有任何影响。

#include<cstdio>
#include<vector>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++) 
#define _for(i, a, b) for(int i = (a); i <= (b); i++) 
using namespace std;

const int MAXN = 112;
const int MAXM = 70;
int dp[MAXN][MAXM][MAXM], map[MAXN];
int num[MAXM], n, m;
vector<int> state;

int one(int x) { return !x ? 0 : 1 + one(x & (x - 1)); }

int main()
{
	scanf("%d%d", &n, &m);
	REP(x, 0, 1 << m)
	  if(!(x & (x << 1) || (x & x << 2)))
	  {
	  	  state.push_back(x);
	  	  num[state.size() - 1] = one(x);
	  } 
	  
	REP(i, 0, n)
	{
		char s[15];
		scanf("%s", s);
		REP(j, 0, m)
			if(s[j] == 'H')
				map[i] |= (1 << j);
	}
	
	REP(i, 0, state.size())
		if(!(state[i] & map[0]))
			dp[0][i][0] = num[i];
	
	REP(i, 0, state.size())
	{
		if((state[i] & map[0])) continue;
		REP(j, 0, state.size())
		{
			if((state[j] & map[1])) continue;
			if((state[j] & state[i])) continue;
			dp[1][j][i] = max(dp[1][j][i], dp[0][i][0] + num[j]);
		}
	}
	
	REP(r, 2, n)
		REP(k, 0, state.size())
		{
			if((state[k] & map[r-2])) continue;
			REP(j, 0, state.size())
			{
				if((state[j] & map[r-1]) || (state[j] & state[k])) continue;
				REP(i, 0, state.size())
				{
					if((state[i] & map[r]) || (state[j] & state[i]) || (state[i] & state[k])) continue;
					dp[r][i][j] = max(dp[r][i][j], dp[r-1][j][k] + num[i]);
				}
			}
		}
	
	int ans = 0;
	REP(r, 0, n)
		REP(i, 0, state.size())
			REP(j, 0, state.size())
				ans = max(ans, dp[r][i][j]);
	printf("%d\n", ans);
		
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值