组合数学题集

bzoj 1008

逆向思维。一共有m^n种状态

我们考虑不越狱的情况

第一个人有m种选择,后面的所有人均是m-1种选择

那么方案数就是 m^n - m * (m - 1) ^ (n - 1) 快速幂就好

其实不难,自己不要怕,心理不要有障碍

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

typedef long long ll;
const int MOD = 100003;

ll cal(ll a, ll b)
{
	ll res = 1;
	while(b)
	{
		if(b & 1) res = (res * a) % MOD;
		a = a * a % MOD;
		b >>= 1;
	}
	return res;
}
 
int main()
{
	ll m, n;
	scanf("%lld%lld", &m, &n);
	printf("%lld\n", (cal(m, n) - (m * cal(m - 1, n - 1) % MOD) + MOD) % MOD);
	return 0;
}

「NOIP2011」计算系数(二项式定理)

裸题。

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
  
const int mod = 10007;
const int MAXN = 1e3 + 10;
int c[MAXN][MAXN];

void init()
{
	REP(i, 0, MAXN)
	{
		c[i][0] = c[i][i] = 1;
		REP(j, 1, i)
			c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod;
	}
}

int power(int a, int b)
{
	int res = 1 % mod; a %= mod;
    for(; b; b >>= 1)
    {
        if(b & 1) res = res * a % mod;
        a = a * a % mod;
    }
    return res;
}

int main()
{
	init();
    int a, b, k, m, n;
    scanf("%d%d%d%d%d", &a, &b, &k, &n, &m);
    printf("%d\n", c[k][n] * power(a, n) % mod * power(b, k - n) % mod);
    return 0;
}

2^k 进制数

首先看到r的每一位严格小于它右边相邻的那一位,就可以想到组合了,因为这相当于排除了排列。

这道题的正解非常巧妙,把每一位拆成k位

比如是2^3进制,用0表示一位,那么就是0 0 0  | 0 0 0 | 0 0 0……

那么我们分两部分来考虑

(1)不包括首位,也就是每一位都是“满的”

那么显然每一个位有2^k-1种可能,可以选2个(即2位数), 3个(三位数)……

一直到最多的位数,即w/k

那么用组合数加一下就好了。

(2)包括首位

那么首位可以取1到2^(w % k) - 1, w%k表示首位的位数

那么假设首位的数是i,那么后面的数就有2^k-1 - i种可能,选w/k个,同样用组合数计算即可

 

最后把两部分的值加起来就是答案。

然后这道题的空间按照极限数据是开不下的,但是数据貌似没有这么强,开小一些一样可以AC

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;
  
const int MAXN = 200 + 10;
const int MAXM = 600;
int k, w, len, p, ma;

struct bignum
{
	int c[MAXN], len;
	
	bignum() { len = 0; memset(c, 0, sizeof(c)); }
	
	void init() { len = 1; c[1] = 1;  }
	
	bignum operator + (const bignum& a)
	{
		bignum res;
		res.len = max(len, a.len);
		_for(i, 1, res.len)
		{
			res.c[i] += c[i] + a.c[i];
			if(res.c[i] >= 10)
			{
				res.c[i + 1]++;
				res.c[i] %= 10;
			}
		}
		if(res.c[res.len + 1] > 0) res.len++;
		return res;
	}
	
	bignum operator += (const bignum& a) { *this = *this + a; }
	
	void print()
	{
		for(int i = len; i >= 1; i--) printf("%d", c[i]);
		puts("");	
	} 
	
}C[MAXM][MAXM]; 

void get_C()
{
	_for(i, 0, max(ma, len))
	{
		C[i][0].init(); C[i][i].init();
		REP(j, 1, i) 
			C[i][j] = C[i-1][j] + C[i-1][j-1];
	}
}

int main()
{
	scanf("%d%d", &k, &w);
	len = w / k, p = w % k, ma = (1 << k) - 1;
	get_C();
	
	bignum ans;
	_for(i, 2, len) ans += C[ma][i];
	REP(i, 1, 1 << p) ans += C[ma - i][len]; 
	ans.print();
    return 0;
}

Lucas定理模板

知道一个公式就好了

c(n, m) % p = c(n % p, m % p) * c(n / p, m / p)

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

typedef long long ll;
ll p;

ll power(ll a, ll b)
{
	ll res = 1 % p; a %= p;
	for(; b; b >>= 1)
	{
		if(b & 1) res = res * a % p;
		a = a * a % p;
	}
	return res;
}

inline ll inv(ll a) { return power(a, p - 2); }

ll C(ll n, ll m)
{
	if(m > n) return 0;
	ll a = 1, b = 1;
	_for(i, n - m + 1, n) a = a * i % p;
	_for(i, 1, m) b = b * i % p;
	return a * inv(b) % p;
}

ll Lucas(ll n, ll m)
{
	if(!m) return 1;
	return C(n % p, m % p) * Lucas(n / p, m / p) % p;
}

int main()
{
	int T, n, m; scanf("%d", &T);
	while(T--)
	{
		scanf("%d%d%lld", &n, &m, &p);
		printf("%lld\n", Lucas(n, m));
	}
    return 0;
}

[Sdoi2010]古代猪文

考的知识点很广。

首先求得含有幂,所以可以用欧拉定理。

但是这里要特判一下

然后把999911658分解质因数,对每一个质因数求一遍值,最后用中国剩余定理合并。

求组合数用lucas定理,其中阶乘可以预处理

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

typedef long long ll;
ll p = 999911658;
ll a[] = {2, 3, 4679, 35617}, b[5];
ll fac[5][36000];

ll pow(ll a, ll b, ll mod)
{
	ll res = 1 % mod; a %= mod;
	for(; b; b >>= 1)
	{
		if(b & 1) res = res * a % mod;
		a = a * a % mod;
	}
	return res;
}

inline ll inv(ll a, ll mod) { return pow(a, mod - 2, mod); }

inline ll C(ll n, ll m, ll x)
{
	ll mod = a[x];
	if(m > n) return 0;
	return fac[x][n] * inv(fac[x][m], mod) % mod * inv(fac[x][n - m], mod) % mod;
}

ll Lucas(ll n, ll m, ll x)
{
	ll mod = a[x];
	if(!m) return 1;
	return C(n % mod, m % mod, x) * Lucas(n / mod, m / mod, x) % mod;
}

void exgcd(ll a, ll b, ll& d, ll& x, ll& y)
{
	if(!b) { d = a; x = 1; y = 0; return; }
	else { exgcd(b, a % b, d, y, x); y -= x * (a / b); }
}

int main()
{
	ll n, g;
	scanf("%lld%lld", &n, &g);
	
	g %= (p + 1);
	if(!g) { puts("0"); return 0; }
	
	REP(i, 0, 4)
	{
		fac[i][0] = 1;
		_for(j, 1, a[i])
			fac[i][j] = fac[i][j-1] * j % a[i];;
	}
	
	for(int i = 1; (ll)i *i <= n; i++)
		if(n % i == 0)
		{
			REP(j, 0, 4) 
			{
				b[j] = (b[j] + Lucas(n, i, j)) % a[j];
				if(i != n / i) 
					b[j] = (b[j] + Lucas(n, n / i, j)) % a[j];
			}
		}
	
	ll ans = 0, d, x, y;
	REP(i, 0, 4)
	{
		ll mi = p / a[i];	
		exgcd(mi, a[i], d, x, y);
		ans = (ans + x * b[i] % p * mi) % p;
	} 
	ans = (ans % p + p) % p;
	
	ans = pow(g, ans, p + 1);
	printf("%lld\n", ans);
	
    return 0;
}

 

bzoj 3898

其实这道题用dp做非常简单,可以用前缀和优化一下。

#include<bits/stdc++.h>
#define add(a, b) a = (a + b) % mod
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

const int mod = 5000011;
const int MAXN = 1e5 + 10;
int dp[MAXN], sum[MAXN], n, k;

int main()
{
	scanf("%d%d", &n, &k);
	dp[0] = sum[0] = 1;
	_for(i, 1, n)
	{
		if(i - k - 1 >= 0)
			add(dp[i], sum[i - k - 1]);	
		else dp[i] = 1;
		add(sum[i], dp[i] + sum[i-1]);
	}
	printf("%d\n", sum[n]);
	return 0;
}

但是我想的时候在想组合。

我想的是枚举公的数量,然后每一只公的和几个母的看作一块来排。

但是具体怎么弄还是没想到。

其实这离正解很近的。

正解就是直接把那几个母的去掉,然后做组合就好了。

我就差了这一步……

#include<bits/stdc++.h>
#define add(a, b) a = (a + b) % mod
#define mul(a, b) a = (a * b) % mod
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

typedef long long ll;
const int mod = 5000011;
const int MAXN = 1e5 + 10;
int n, k;

ll power(ll a, ll b)
{
	ll res = 1 % mod; a %= mod;
	for(; b; b >>= 1)
	{
		if(b & 1) mul(res, a);
		mul(a, a);
	}
	return res;
}

inline ll inv(ll a) {  return power(a, mod - 2); }

ll C(int n, int m)
{
	ll a = 1, b = 1;
	_for(i, n - m + 1, n) mul(a, i);
	_for(i, 1, m) mul(b, i);
	return a * inv(b) % mod;
}

int main()
{
	ll ans = 0;
	scanf("%d%d", &n, &k);
	_for(i, 0, n)
	{
		int t = n - (i - 1) * k;
		if(t < i) break;
		add(ans, C(t, i));
	}
	printf("%lld\n", ans);
	return 0;
}

「一本通 6.6 练习 2」方程的解

这种方程解的组数的题可以转化为插板法

答案为C(g-1,  k-1)

然后就是要用高精度了

#include<bits/stdc++.h>
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

const int MAXN = 1e4;
const int p = 1e3;

struct bign
{
	int len, c[MAXN];
	
	bign() { len = 0; memset(c, 0, sizeof(c)); }
	
	bign operator * (int b)
	{
		bign a = *this, res;
		res.len = a.len;
		_for(i, 1, len) 
		{
			res.c[i] += a.c[i] * b;
			res.c[i + 1] += res.c[i] / 10;
			res.c[i] %= 10;
		}
		while(res.c[res.len + 1] > 0)
		{
			res.len++;
			res.c[res.len + 1] += res.c[res.len] / 10;
			res.c[res.len] %= 10;
		}
		return res;
	}
	
	bign operator / (int b)
	{
		bign a = *this, res;
		res.len = a.len;
		int x = 0;
		for(int i = len; i >= 1; i--)
		{
			int now = x * 10 + a.c[i];
			res.c[i] = now / b;
			x = now % b;
		}
		while(!res.c[res.len]) res.len--;
		return res;
	}
	
	void print()
	{
		for(int i = len; i >= 1; i--) printf("%d", c[i]);
		puts("");
	}
};

int power(int a, int b)
{
	int res = 1 % p; a %= p;
	for(; b; b >>= 1)
	{
		if(b & 1) res = res * a % p;
		a = a * a % p;
	}
	return res;
}

int main()
{
	int k, x, t, g; 
	scanf("%d%d", &k, &x); 
	g = power(x, x);
	
	bign ans; g--; k--;
	ans.len = 1; ans.c[1] = 1;
	_for(i, 1, k) 
		ans = ans * g / i, g--;
	ans.print();
	
	return 0;
}

bzoj 2982

刷刷水题压压惊。Lucas定理模板题

阶乘和逆元可以预处理,快了很多

0的逆元看作1

#include<bits/stdc++.h>
#define mul(a, b) a = (a * b) % mod
#define REP(i, a, b) for(register int i = (a); i < (b); i++)
#define _for(i, a, b) for(register int i = (a); i <= (b); i++)
using namespace std;

typedef long long ll;
const int mod = 10007;

ll fac[mod + 10], facinv[mod + 10];

ll power(ll a, ll b)
{
	ll res = 1 % mod; a %= mod;
	for(; b; b >>= 1)
	{
		if(b & 1) mul(res, a);
		mul(a, a);
	}
	return res;
}

void init()
{
	fac[0] = facinv[0] = 1;
	_for(i, 1, mod)	
	{
		fac[i] = fac[i - 1] * i % mod;
		facinv[i] = power(fac[i], mod - 2);
	}
}

inline ll C(ll n, ll m)
{
	if(m > n) return 0;
	return fac[n] * facinv[m] % mod * facinv[n - m] % mod;
}

ll Lucas(ll n, ll m)
{
	if(!m) return 1;
	return Lucas(n / mod, m / mod) * C(n % mod, m % mod) % mod;
}

int main()
{
	init();
	int T; scanf("%d", &T);
	while(T--)
	{
		ll n, m;
		scanf("%lld%lld", &n, &m);
		printf("%lld\n", Lucas(n, m));
	}
	return 0;
}

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值