鱼儿会飞吗
码龄9年
关注
提问 私信
  • 博客:416,154
    社区:1
    视频:11
    416,166
    总访问量
  • 885
    原创
  • 2,291
    排名
  • 4,271
    粉丝
  • 2
    铁粉
  • 学习成就

个人简介:Programming is thinking not typing.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2016-03-25
博客简介:

qq_34425255的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,487
    当月
    88
个人成就
  • 获得5,879次点赞
  • 内容获得60次评论
  • 获得3,621次收藏
  • 代码片获得1,589次分享
创作历程
  • 882篇
    2024年
  • 3篇
    2023年
成就勋章
TA的专栏
  • 笔记
    17篇
  • 论文精读
    14篇
  • PyTorch
    3篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习为什么要先确定模型

机器学习(深度学习)为什么需要训练,训练出来的模型具体又是什么?_深度学习模型训练是把真实结果输入训练什么-CSDN博客
原创
发布博客 2024.11.07 ·
170 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习方法三要素理解:模型、策略、算法

从给定的、有限的、用于学习的训练数据(training data)出发,假设数据是独立同分布产生的;应用于某个评价准则(evaluation criterion),从假设空间中选取一个最优模型,使它对已知的训练数据及未知的测试数据(test data)在给定评价准则下有最优的预测;机器学习方法之间的不同,主要就是来自于模型、策略、算法的不同,确定了模型、策略、算法,那么机器学习的方法也就确定了。这样,机器学习方法包括:模型的假设空间,模型的选择准则以及模型的学习算法。称其为机器学习方法的三要素,简称为。
原创
发布博客 2024.11.07 ·
324 阅读 ·
7 点赞 ·
0 评论 ·
3 收藏

到底选择哪个f?

原创
发布博客 2024.11.07 ·
112 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Exercise 1.7(d)学习算法是在训练数据上结果全部正确,但是在预测数据上和$\text {XOR}​$不符合度最高的的假设

原创
发布博客 2024.11.07 ·
107 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Exercise 1.7(c)有奇数个$1$则取$•$,否则取$o$

原创
发布博客 2024.11.07 ·
62 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Exercise 1.7(b) 假设空间为全$o​$以及全$•​$

学习的算法是取和训练数据集符合程度最少的假设,所以这里取全$o$
原创
发布博客 2024.11.07 ·
471 阅读 ·
21 点赞 ·
0 评论 ·
0 收藏

Exercise 1.7(a) 假设空间为全$o​$以及全$•​$

显然全$•​$在$5​$组训练数据上有$3​$组正确,全$o​$只有$2​$组正确,所以这里取全$•​$2个点相同的函数是f4,f6,f7。1个点相同的函数是f2,f3,f5。3个点相同的函数是f8。
原创
发布博客 2024.11.07 ·
274 阅读 ·
11 点赞 ·
0 评论 ·
0 收藏

Outside the Data Set

这个简单的布尔情况的优势在于,我们可以枚举整个输入空间(因为只有 2³ = 8 个不同的输入向量),并且我们可以枚举所有可能的目标函数(因为 f 是一个 3 个布尔输入的布尔函数,而 3 个布尔输入只有 2^(2^3) = 256 个不同的布尔函数)。让我们来看学习函数 f 的问题。当我们获得训练数据D,比如图1.7的前两行,我们就知道了D中所有点上函数f的值。但这并不意味着我们已经学会了f,因为这并不能保证我们了解f在D之外的任何信息。既然我们认为函数f是未知的,那么我们可以证明f在D之外仍然是未知的。
原创
发布博客 2024.11.05 ·
406 阅读 ·
12 点赞 ·
0 评论 ·
3 收藏

Is Learning Feasible?

例如,如果真正的函数f在图案对称时输出+1,那么测试点的值就会是+1。但如果f在图案的左上角为白色时输出+1,那么测试点的值就会是-1。"可行性"一词在这个上下文中表示,虽然目标函数(target function)是未知的,但使用有限的数据集是否足以确定整个目标函数。也就是说,从有限的数据中学习一个未知的目标函数是否实际上是可行的。所以这里问的是,在只有有限数据集的情况下,学习未知的目标函数是否属于可行的范畴。目标函数f是学习的对象,关于目标函数最重要的陈述就是它是未知的,我们真的是指它是未知的。
原创
发布博客 2024.11.05 ·
307 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

Other Views of Learning

这里的 "nonetheless" 表示"尽管如此",强调即使结果较弱,但其适用范围依然很广泛。"broadly"则是指这种适用性是广泛的、普遍的。我们做出的假设相对宽松一些,采用的是更加广义的模型,而不像统计学那样严格。因此,我们得到的结果虽然相对较弱,但却更加普遍适用。"Uncover" 的中文意思是 "揭示"、"发现" 或 "揭开"。这里的 "underlying" 表示隐藏的或基础的,指的是支配观察结果的深层规律或机制。统计学依循了从数据中学习的基本前提,利用一组观测数据来揭示潜在的规律性过程。
原创
发布博客 2024.11.05 ·
168 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Probability to the Rescue

"Probability to the Rescue"这个短语生动形象地表达了概率分析在这个过程中扮演的关键角色 - 它像是一种"拯救"的力量,帮助我们突破局限,获得更多的洞见和理解。这种用比喻的方式来描述概率分析的作用,使得标题更加生动有趣。如何利用概率分析的方法,从有限的数据中推断出更多有价值的信息,从而帮助我们克服数据不足的困境,解决学习问题。
原创
发布博客 2024.11.05 ·
222 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

训练阶段和测试阶段最本质区别是什么

训练阶段关注于模型的学习和优化,而测试阶段专注于评估模型在未见数据上的表现。这两个阶段在目的、数据处理和反馈机制上有本质的区别,确保模型不仅在训练数据上表现良好,也能在实际应用中有效。
原创
发布博客 2024.11.05 ·
361 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

使用Typora添加行内数学公式怎么添加?

点击“文件” --> “偏好设置” --> “Markdown” --> “Markdown扩展语法” —> 勾选 “内联公式(例:$ \LaTeX $)”首先需要确认,Typora已经勾选 “插入内联公式” 选项。会被渲染为 E=mc2E=mc^2E=mc2。确认以上步骤之后,就可以使用了。:用于表示行内数学公式。
原创
发布博客 2024.11.03 ·
317 阅读 ·
12 点赞 ·
0 评论 ·
2 收藏

选择五次多项式来拟合由一次函数生成的数据时,尽管可以找到无数条=0的曲线,但这实际上是过拟合的表现

比如说增加到2次,3次,注意这里2次,3次的模型其实是包含更低的1次模型的,也就是说2次模型可以拟合出直线,也可以拟合出抛物线,3次模型可以拟合出直线,抛物线,3次曲线,都可以,这样就算选择了2次3次的模型,最后只需要寻找Ein最小的情况,仍然可以寻找到这根直线,毕竟2次,3次曲线我们没有办法让Ein=0,也就是说这种情况下,虽然模型选择了更复杂的,但是好像并没有带来过拟合,那是不是过拟合就不会产生了呢?模型未能学习到数据背后的真实规律,而是对训练数据进行了过度拟合,导致在新数据上的泛化能力下降。
原创
发布博客 2024.11.02 ·
223 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

什么是过拟合?

原创
发布博客 2024.11.01 ·
170 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

了解一个东西,有两种思路

那这个思路虽然不能让你搞明白它的内部结构,但是它能让人清晰知道它的作用和意义,林轩田老师课堂难懂,很大一部分原因,就是一上来就把这个盲盒给你打开了,看课程的时候,就经常会给你一种感觉,我是谁,我在哪,为什么要这样做,这种困惑,而王木头学科学up的思路是,先拿这个盲盒,和大家一起端详端详,摇一摇,听听声,先让自己对打开它充满期待。白盒思路就是我们把它打开,掰开了,揉碎了,搞明白它的内部结构,这个方法好是好,但是它要求你是有经验的专家,只有这样,你才能明白,要不然你就会经常遇到“为什么要这样”的这种疑问。
原创
发布博客 2024.10.30 ·
259 阅读 ·
13 点赞 ·
0 评论 ·
2 收藏

学习有三种方式

我们通常说的机器学习是指的归纳这种方法。学习有三种方式,演绎,归纳,演化。
原创
发布博客 2024.10.30 ·
171 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

如果完全不考虑X和T是什么关系的话?

最大的意义在于,我们不需要根据实际的情况现实是什么,这个X和T到底是什么样的关系,不用考虑了,我们就可以直接对(X,T)这个联合概率进行一个解耦,解耦成一个1维的情况和一个2维的情况,其中这个2维的情况,不是两个维度都有权重信息,而是只有一个维度有权重,另一个维度只是一个普通的变量,某种程度上来看,条件概率也算是一种降维了,是一种不完全的降维,需要补充额外的条件,才能实现真正的降维,也就是说降维的方式有两种,一种是边缘概率,另一种是条件概率。具体这个符号背后的意义是什么?
原创
发布博客 2024.10.29 ·
692 阅读 ·
13 点赞 ·
0 评论 ·
4 收藏

随机变量组成的这个方程对目标问题的描述并不完备

这个次数完全可以使用一个实数变量A来表示,具体A等于多少,可以通过时间间隔T和A的这个关系,也就是一个函数f(T)=A这样一个函数去决定,于是就可以知道当变量T取某一个具体数值的时候,对应的结果就是一个具体的数值,对应的是实数轴上的一个点。如果问题换了,不是康德了,而是康德的狗,狗每天也会经过家门口的桥,但是就没有那么有规律了,有的时候一天经过好几次,有的时候可能一次也没有,如果把狗经过桥上的次数使用随机变量来表示,仍然可以建立一个函数关系。
原创
发布博客 2024.10.29 ·
126 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

什么叫完备描述?

完备描述”指的是方程或模型能够全面、准确地捕捉和反映所研究现象的所有重要特征和动态。这意味着方程不仅要包含所有必要的变量和参数,还要考虑到它们之间的相互关系和影响。:模型涵盖了所有相关的物理量和影响因素。例如,在流体动力学中,若只考虑速度而忽略压力和温度,则模型不够完备。:方程应准确描述变量之间的关系。例如,麦克斯韦方程组能准确描述电磁场的行为,确保电场和磁场的相互作用被正确建模。:方程之间应保持逻辑和理论的一致性。比如,爱因斯坦场方程与广义相对论的其他核心理论相一致。
原创
发布博客 2024.10.29 ·
693 阅读 ·
13 点赞 ·
0 评论 ·
19 收藏
加载更多