PCA算法:
# 输入:训练样本集 ?=?(1),?(2),...,?(?) ,低维空间维数 ?′ ;
# 过程:.
# 1:对所有样本进行中心化(去均值操作): ?(?)?←?(?)?−1?∑??=1?(?)? ;
# 2:计算样本的协方差矩阵 ??? ;
# 3:对协方差矩阵 ??? 做特征值分解 ;
# 4:取最大的 ?′ 个特征值所对应的特征向量 ?1,?2,...,??′
# 5:将原样本矩阵与投影矩阵相乘: ?⋅? 即为降维后数据集 ?′ 。其中 ? 为 ?×? 维, ?=[?1,?2,...,??′] 为 ?×?′ 维。
# 5:输出:降维后的数据集 ?′
1、
list[start:end:step]
start:起始位置
end:结束位置
step:步长
2、
>>> c=np.array([[1,2,3],[4,6,7],[7,8,9]])
>>> c[:-1:]
array([[1, 2, 3],
[4, 6, 7]])
>>> c[:-2:]
array([[1, 2, 3]])
3、
X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素。
X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右。
X[0,:]就是取矩阵X的第0行的所有元素,X[1,:]取矩阵X的第一行的所有元素。
4、
<