题目描述:
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。
提示:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-common-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
使用动态规划即可,今天刚刚上完动态规划
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
char [] tem1 = text1.toCharArray();
char [] tem2 = text2.toCharArray();
int len1 = tem1.length;
int len2 = tem2.length;
int dp[][] = new int[len1][len2];
boolean flag = false;
for (int i = 0; i < len2; i++) {
if(tem1[0] == tem2[i]){
flag = true;
dp[0][i] = 1;
}
if(flag){
dp[0][i] = 1;
}
}
flag = false;
for (int i = 0; i < len1; i++) {
if(tem2[0] == tem1[i]){
flag = true;
dp[i][0] = 1;
}
if(flag){
dp[i][0] = 1;
}
}
for (int i = 1; i < len1; i++) {
for (int j = 1; j < len2; j++) {
if(tem1[i] == tem2[j]){
dp[i][j] = dp[i - 1][j - 1] + 1;
}else {
dp[i][j] = Math.max(dp[i][j - 1],dp[i - 1][j]);
}
}
}
return dp[len1 - 1][len2 - 1];
}
}
本文介绍了一种基于动态规划的算法,用于求解两个字符串的最长公共子序列问题。通过构建二维数组记录子问题的解,实现了高效求解。
530

被折叠的 条评论
为什么被折叠?



