250、最长公共子序列(LCS问题)

本文介绍了一种基于动态规划的算法,用于求解两个字符串的最长公共子序列问题。通过构建二维数组记录子问题的解,实现了高效求解。

题目描述:
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
示例 2:

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。
示例 3:

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-common-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

使用动态规划即可,今天刚刚上完动态规划

class Solution {
        public int longestCommonSubsequence(String text1, String text2) {
        char [] tem1 = text1.toCharArray();
        char [] tem2 = text2.toCharArray();
        int len1 = tem1.length;
        int len2 = tem2.length;
        int dp[][] = new int[len1][len2];
        boolean flag = false;
        for (int i = 0; i < len2; i++) {
            if(tem1[0] == tem2[i]){
                flag = true;
                dp[0][i] = 1;
            }
            if(flag){
                dp[0][i] = 1;
            }
        }
        flag = false;
        for (int i = 0; i < len1; i++) {
            if(tem2[0] == tem1[i]){
                flag = true;
                dp[i][0] = 1;
            }
            if(flag){
                dp[i][0] = 1;
            }
        }
        for (int i = 1; i < len1; i++) {
            for (int j = 1; j < len2; j++) {
                if(tem1[i] == tem2[j]){
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                }else {
                    dp[i][j] = Math.max(dp[i][j - 1],dp[i - 1][j]);
                }
            }
        }
        return dp[len1 - 1][len2 - 1];
        }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值