/*
* 思想:从待排序列的第二个元素开始直到最后一个元素,逐个向前面的有序序列中执行插入操作,第一趟
* 比较前两个数,然后把第二个数按大小插入到有序序列中;第二趟把第三个数据与前两个数从后向前
* 扫描,把第三个数按大小插入到有序序列中,以此类推,直到所有元素都插入完成。
* 时间复杂度:最好情况,即顺序排好了:O(n)。
* 最坏情况,即完全逆序:O(n^2),当数组倒序时,逆序对的个数为n(n-1)/2,因此,复杂
* 度为O(n^2)。
* 平均时间复杂度:O(n^2)。
* 空间复杂度:O(1)。
* 稳定性:稳定。while (j >= 0 && temp < arr[j])这句代码中,改为"<="就会变得不稳定,因为
* 如果只是判断小于的话,那么大于和等于都不会继续下面的操作,从而找到了该插入的位置,如果有
* 等于号的话,则相等的那个数也要执行移动位置的操作,便会使算法不稳定。
* 思想:从待排序列的第二个元素开始直到最后一个元素,逐个向前面的有序序列中执行插入操作,第一趟
* 比较前两个数,然后把第二个数按大小插入到有序序列中;第二趟把第三个数据与前两个数从后向前
* 扫描,把第三个数按大小插入到有序序列中,以此类推,直到所有元素都插入完成。
* 时间复杂度:最好情况,即顺序排好了:O(n)。
* 最坏情况,即完全逆序:O(n^2),当数组倒序时,逆序对的个数为n(n-1)/2,因此,复杂
* 度为O(n^2)。
* 平均时间复杂度:O(n^2)。
* 空间复杂度:O(1)。
* 稳定性:稳定。while (j >= 0 && temp < arr[j])这句代码中,改为"<="就会变得不稳定,因为
* 如果只是判断小于的话,那么大于和等于都不会继续下面的操作,从而找到了该插入的位置,如果有
* 等于号的话,则相等的那个数也要执行移动位置的操作,便会使算法不稳定。
*/
public class InsertSort {
public static void insertSort(int[] arr) {
int temp = 0;
int j = 0;
for (int i = 1; i < arr.length; i++) {
temp = arr[i]; // 把data[i]保存起来
j = i - 1; // j是i的前一个数字的下标
while (j >= 0 && temp < arr[j]) { // 每次和前面的数字进行比较,注意变量j的下标不能越界
arr[j + 1] = arr[j]; // 如果前面的数字大,就把该数字向后移动一位
j--; // 然后j的值减1,再向前找位置
}
arr[j + 1] = temp; // j+1就是temp应该插入的位置,直接插入即可
}
}
public static void print(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
public static void main(String[] args) {
int[] data = { 18, 16, 27, 19, 10, 37, 63, 28, 33, 54 };
System.out.println("插入排序前的数组:");
print(data);
System.out.println("插入排序后的数组:");
insertSort(data);
print(data);
}
}