【DP】Codeforces1025D Recovering BST

题意:

给出n个点,每个点有一个点权 ai a i
现在要求构造一颗二叉搜索树,需要满足:每条边两端的点其权值不互质。
询问能否满足


分析:

很水的区间DP题啦。。。
不知道为什么同学们还有WK大佬都没做出来呢。。。
看来同学们的DP训练还得再做做啊。。。

(话是这么说,不过我似乎除了DP啥也不会了。。。好菜啊。。。)

首先,由于其是一颗二叉搜索树,所以其中序遍历必然是不下降的。

所以呢,可以将序列中连续的某一段当做一颗子树来处理:
每次枚举一个根节点,将原序列分为左右两个序列(即左子树和右子树)。

然后发现,对任意一个区间 (l,r) ( l , r ) 来说,其上一层的父亲节点必然是 l1 l − 1 r+1 r + 1 (cch和wk大佬都是这里被卡了呢)。

证明很显然啦。。。如果其父亲不是 l1 l − 1 r+1 r + 1 的话。。。你打算把中间空着的那一段放哪?

如果还没懂的话我再扯详细一点:
根据DP转移方式,每次在区间中枚举一个点后,将区间分为左半部分和右半部分两个子区间,那么这两个子区间的父亲节点即为我们枚举出来的这个点,所以这两个区间就满足上述条件,对其子序列数学归纳一下就证明出来了。

所以dp定义就很显然啦。。。
dp(i,j,0) d p ( i , j , 0 ) 表示区间 [l,r] [ l , r ] 构成的子树是否有一种方案满足其根节点的值与 al1 a l − 1 不互质
dp(i,j,1) d p ( i , j , 1 ) 表示区间 [l,r] [ l , r ] 构成的子树是否有一种方案满足其根节点的值与 ar+1 a r + 1 不互质

转移就是枚举一个k (lkr) ( l ≤ k ≤ r )
如果 dp[l][k1]=1 d p [ l ] [ k − 1 ] = 1 dp[k+1][r]=1 d p [ k + 1 ] [ r ] = 1 gcd(ak,al1) g c d ( a k , a l − 1 ) ,则 dp[l][r][0]=1 d p [ l ] [ r ] [ 0 ] = 1 ;
如果 dp[l][k1]=1 d p [ l ] [ k − 1 ] = 1 dp[k+1][r]=1 d p [ k + 1 ] [ r ] = 1 gcd(ak,ar+1) g c d ( a k , a r + 1 ) ,则 dp[l][r][1]=1 d p [ l ] [ r ] [ 1 ] = 1

额。。为了不卡常需要预处理一下每两个数的gcd。。然后就做完了。。。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#define SF scanf
#define PF printf
#define MAXN 710
using namespace std;
int a[MAXN],n;
bool dp[MAXN][MAXN][2];
int g[MAXN][MAXN];
int gcd(int x,int y){
    if(y==0)
        return x;
    return gcd(y,x%y);
}
int main(){
    SF("%d",&n);
    for(int i=1;i<=n;i++)
        SF("%d",&a[i]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            g[i][j]=gcd(a[i],a[j]);
    for(int len=1;len<=n;len++)
        for(int l=1;l+len-1<=n;l++){
            int r=l+len-1;
            for(int k=l;k<=r;k++)
                if((k==l||dp[l][k-1][1])&&(k==r||dp[k+1][r][0])){
                    if(l!=1&&g[k][l-1]!=1)
                        dp[l][r][0]=1;
                    if(r!=n&&g[k][r+1]!=1)
                        dp[l][r][1]=1;
                }
        }
    bool ans=0;
    for(int rt=1;rt<=n;rt++)
        if((rt==1||dp[1][rt-1][1])&&(rt==n||dp[rt+1][n][0]))
            ans=1;
    if(ans==0)
        PF("No\n");
    else
        PF("Yes\n");
}
### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值