分析:
根据最小生成树的性质,如果存在多个最小生成树,那么这几种最小生成树必然满足:权值相等的边数量相同。所以要计算不同的情况,只需要考虑权值相同的边的选择状态。
然后由于题目满足:权值相等的边不超过10条,那么爆搜就可以了。
对于权值相同的一个边集,用爆搜讨论完所有的选择情况,如果选择完后,这种权值边的总数,与预先求出的最小生成树中这种边权的边数量相同,即合法。
然后乘法原理乘起来就可以了。
由于点和边总数不大,并查集可以用随机合并(其实直接合并也不会T)
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#include<cstring>
#include<cstdlib>
#define SF scanf
#define PF printf
#define MAXN 1010
#define MOD 31011
using namespace std;
struct edge{
int u,v,val;
bool operator <(const edge &a) const {
return val<a.val;
}
}e[MAXN];
struct node{
int l,r,v;
}a[MAXN];
int fa[MAXN],ans=1,sum,tot;
int get_fa(int x){
if(fa[x]==0)
return x;
return get_fa(fa[x]);
}
void dfs(int x,int now,int used){
if(now==a[x].r+1){
if(used==a[x].v)
sum++;
return ;
}
int u=get_fa(e[now].u);
int v=get_fa(e[now].v);
if(u!=v){
fa[u]=v;
if(rand()%2==1)
swap(u,v);
dfs(x,now+1,used+1);
fa[u]=0;
fa[v]=0;
}
dfs(x,now+1,used);
}
int main(){
srand(0);
int n,m,cnt=0;
SF("%d%d",&n,&m);
for(int i=1;i<=m;i++)
SF("%d%d%d",&e[i].u,&e[i].v,&e[i].val);
sort(e+1,e+1+m);
for(int i=1;i<=m;i++){
if(e[i].val!=e[i-1].val){
a[++cnt].l=i;
a[cnt-1].r=i-1;
}
int u=get_fa(e[i].u);
int v=get_fa(e[i].v);
if(u!=v){
fa[v]=u;
a[cnt].v++;
tot++;
}
}
a[cnt].r=m;
if(tot!=n-1){
PF("0");
return 0;
}
memset(fa,0,sizeof fa);
for(int i=1;i<=cnt;i++){
sum=0;
dfs(i,a[i].l,0);
ans=ans*sum%MOD;
for(int j=a[i].l;j<=a[i].r;j++){
int u=get_fa(e[j].u);
int v=get_fa(e[j].v);
if(rand()%2==1)
swap(u,v);
if(u!=v)
fa[u]=v;
}
}
PF("%d",ans);
}