【DP】【单调队列】Codeforces1131G Most Dangerous Shark

题意:

给出一排多米诺骨牌各自的高度,以及推到它的代价。

推到既可以向左也可以向右。

求全部推到的最小代价。

输入格式较为恶心


分析:

比赛中是真没时间去做了。
读题读了20min…(主要是输入格式)

首先,有一个很显然的DP
d p i dp_i dpi表示前i个骨牌全部推到的最小代价。
那么有2种转移方式:
假设把i向左推,能倒的最远的一个骨牌编号为j。
d p i = d p j − 1 + c o s t i dp_i=dp_{j-1}+cost_i dpi=dpj1+costi
S为一骨牌集合,其中的每个骨牌均满足:在i左边,且将其向右推能推倒i
d p i = m i n { d p S k − 1 + c o s t S k } dp_i=min\{dp_{S_k-1}+cost_{S_k}\} dpi=min{dpSk1+costSk}

裸做是 O ( N 2 ) O(N^2) O(N2)

考虑优化
有一个很显然的性质:
假设 i i i向右推,能倒的最远的位置为 j j j
如果满足 j ≥ i + 1 j\geq i+1 ji+1,那么将 i + 1 i+1 i+1向右推,能倒的最远位置一定不超过 j j j
因为i能推倒i+1,所以i+1倒了能推倒的位置i就一定能推倒。

有了这个性质,就可以用单调栈来维护集合S(即在i某侧,并能推倒i的集合)。

加入一个新位置 i ′ i' i后,检查队首元素能否直接推倒 i ′ i' i

然后做两遍单调栈,第二次维护一下栈的前缀最小值即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define SF scanf
#define PF printf
#define MAXM 10000010
#define MAXN 250010
using namespace std;
typedef long long ll;
int n,m;
vector<int> pri[MAXN],he[MAXN];
ll p[MAXM];
int st[MAXM],top,h[MAXM],tot,lft[MAXM];
ll minv[MAXM],dp[MAXM];
int main(){
	SF("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		SF("%d",&tot);
		he[i].resize(tot);
		pri[i].resize(tot);
		for(int j=0;j<tot;j++)
			SF("%d",&he[i][j]);	
		for(int j=0;j<tot;j++)
			SF("%d",&pri[i][j]);
	}
	ll mul;
	int q,id;
	SF("%d",&q);
	int cnt=0;
	for(int i=1;i<=q;i++){
		SF("%d%lld",&id,&mul);	
		for(int j=0;j<int(he[id].size());j++){
			h[++cnt]=he[id][j];
			p[cnt]=1ll*pri[id][j]*mul;
		}
	}
	
	for(int i=m;i>=1;i--){
		while(top>0&&i<=st[top]-h[st[top]]){
			lft[st[top]]=i+1;
			top--;
		}
		st[++top]=i;
	}
	while(top>0){
		lft[st[top]]=1;
		top--;	
	}
	for(int i=1;i<=m;i++){
		while(top>0&&i>=st[top]+h[st[top]])
			top--;
		dp[i]=dp[lft[i]-1]+p[i];
		if(top>0)
			dp[i]=min(dp[i],minv[top]);
		st[++top]=i;
		minv[top]=dp[i-1]+p[i];
		if(top>1)
			minv[top]=min(minv[top],minv[top-1]);
	}
	PF("%lld",dp[m]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值