题意:
给出一排多米诺骨牌各自的高度,以及推到它的代价。
推到既可以向左也可以向右。
求全部推到的最小代价。
输入格式较为恶心
分析:
比赛中是真没时间去做了。
读题读了20min…(主要是输入格式)
首先,有一个很显然的DP
d
p
i
dp_i
dpi表示前i个骨牌全部推到的最小代价。
那么有2种转移方式:
假设把i向左推,能倒的最远的一个骨牌编号为j。
d
p
i
=
d
p
j
−
1
+
c
o
s
t
i
dp_i=dp_{j-1}+cost_i
dpi=dpj−1+costi
S为一骨牌集合,其中的每个骨牌均满足:在i左边,且将其向右推能推倒i
d
p
i
=
m
i
n
{
d
p
S
k
−
1
+
c
o
s
t
S
k
}
dp_i=min\{dp_{S_k-1}+cost_{S_k}\}
dpi=min{dpSk−1+costSk}
裸做是 O ( N 2 ) O(N^2) O(N2)
考虑优化
有一个很显然的性质:
假设
i
i
i向右推,能倒的最远的位置为
j
j
j
如果满足
j
≥
i
+
1
j\geq i+1
j≥i+1,那么将
i
+
1
i+1
i+1向右推,能倒的最远位置一定不超过
j
j
j
因为i能推倒i+1,所以i+1倒了能推倒的位置i就一定能推倒。
有了这个性质,就可以用单调栈来维护集合S(即在i某侧,并能推倒i的集合)。
加入一个新位置 i ′ i' i′后,检查队首元素能否直接推倒 i ′ i' i′
然后做两遍单调栈,第二次维护一下栈的前缀最小值即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define SF scanf
#define PF printf
#define MAXM 10000010
#define MAXN 250010
using namespace std;
typedef long long ll;
int n,m;
vector<int> pri[MAXN],he[MAXN];
ll p[MAXM];
int st[MAXM],top,h[MAXM],tot,lft[MAXM];
ll minv[MAXM],dp[MAXM];
int main(){
SF("%d%d",&n,&m);
for(int i=1;i<=n;i++){
SF("%d",&tot);
he[i].resize(tot);
pri[i].resize(tot);
for(int j=0;j<tot;j++)
SF("%d",&he[i][j]);
for(int j=0;j<tot;j++)
SF("%d",&pri[i][j]);
}
ll mul;
int q,id;
SF("%d",&q);
int cnt=0;
for(int i=1;i<=q;i++){
SF("%d%lld",&id,&mul);
for(int j=0;j<int(he[id].size());j++){
h[++cnt]=he[id][j];
p[cnt]=1ll*pri[id][j]*mul;
}
}
for(int i=m;i>=1;i--){
while(top>0&&i<=st[top]-h[st[top]]){
lft[st[top]]=i+1;
top--;
}
st[++top]=i;
}
while(top>0){
lft[st[top]]=1;
top--;
}
for(int i=1;i<=m;i++){
while(top>0&&i>=st[top]+h[st[top]])
top--;
dp[i]=dp[lft[i]-1]+p[i];
if(top>0)
dp[i]=min(dp[i],minv[top]);
st[++top]=i;
minv[top]=dp[i-1]+p[i];
if(top>1)
minv[top]=min(minv[top],minv[top-1]);
}
PF("%lld",dp[m]);
}