hdu oj 1203 I NEED A OFFER!(背包)

I NEED A OFFER!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24966    Accepted Submission(s): 10093


Problem Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
 

Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
 

Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
 

Sample Input
  
  
10 3 4 0.1 4 0.2 5 0.3 0 0
 
Sample Output
   
   
44.0%
Hint
You should use printf("%%") to print a '%'.


题目地址: hdu 1203



   1:概率问题:求得到一份offer的最大概率,即求得不到offer的最小概率:
状态转移方程:dp[j] = min(dp[j - c[i]]*(1 - r[i]),dp[j]);这道题是一道易错题,不能够把概率机械地相加,同时要求的是拿不到OFFER的最小概率,而非正面求拿到OFFER的最大概率,拿到OFFER的意思是至少拿到一份OFFER,如果把状态转移方程写成dp[j] = max(dp[j -c[i]]*r[i],dp[j])那么就变成了求拿到所有OFFER的最大概率,拿到所有OFFER和拿到至少一份OFFER显然是不同的.所以这道题要从反面求.
   2:一定要注意Hint的内容,在这里WA一次。


#include<cstdio>
#include<math.h>
#include<string.h>
#include<iostream>
using namespace std;
int main()
{
	int n, m, a[10005];
	double b[10005], f[10005];
	while(~scanf("%d %d", &n, &m))
	{
		if(n==0 && m==0) break;
		int i, j;
		for(i = 0;  i < m; i++)
		{
			scanf("%d %lf", &a[i], &b[i]);
			b[i] = 1.0 - b[i];
		}    
		for(i = 0;i <= n; i++)
            f[i] = 1.0;
		for(i = 0; i < m; i++)
		{
			for(j = n; j >= a[i]; j--)
			{
				f[j]=min(f[j], f[j-a[i]]*b[i]);
			}
		}
		printf("%.1lf%%\n", 100*(1-f[n]));
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值