区间最大公约数(线段树)

题目

题目传送门
在这里插入图片描述

题解

  • gcd ⁡ ( a , b ) = gcd ⁡ ( a , b − a ) \gcd(a,b)=\gcd(a, b-a) gcd(a,b)=gcd(a,ba)
  • gcd ⁡ ( a , b , c ) = gcd ⁡ ( a , b − a , c − b ) \gcd(a,b,c) = \gcd(a,b-a, c-b) gcd(a,b,c)=gcd(a,ba,cb)
  • gcd ⁡ ( a 1 , a 2 , ⋯   , a n ) = gcd ⁡ ( a 1 , a 2 − a 1 , a 3 − a 2 , ⋯   , a n − a n − 1 ) \gcd(a_1,a_2,\cdots,a_n) = \gcd(a_1, a_2-a_1, a_3-a_2,\cdots,a_n-a_{n-1}) gcd(a1,a2,,an)=gcd(a1,a2a1,a3a2,,anan1)
  • 知道了这个性质我们可以开一个 B [    ] B[\ \ ] B[  ]数组,表示原序列的差分序列,用线段数维护 B B B的区间最大公约数
  • 对于询问“Q l r”等于求出 gcd ⁡ ( a [ l ] , q u e r y ( 1 , l + 1 , r ) ) \gcd(a[l], query(1,l+1, r)) gcd(a[l],query(1,l+1,r))
  • 对于询问"C l r d"等于 B [ l ] B[l] B[l]加上 d d d B [ r + 1 ] B[r+1] B[r+1]减去 d d d,只需两次线段数的单点修改即可(线段树单点修改模板),对于原序列中 A A A的值,我们可以用一个“区间修改+单点查询”的树状数组来维护(树状数组区间修改+单点查询模板)

code

#include <bits/stdc++.h> 
using namespace std; 
const int maxn = 5e5 + 100; 
typedef long long LL; 

template <typename T> 
inline void read(T &s) {
    s = 0; 
    T w = 1, ch = getchar(); 
    while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
    while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
    s *= w; 
}

LL n, m; 
LL a[maxn], b[maxn], c[maxn]; // 原数组,差分数组,增量数组(树状数组) 
struct node {
    LL l, r; 
    LL dat; 
} t[maxn * 4]; 

inline LL gcd(LL x, LL y) { return y ? gcd(y, x % y) : x; }

inline void build(LL p, LL l, LL r) {
    t[p].l = l, t[p].r = r; 
    if (l == r) { t[p].dat = b[l]; return ; }
    LL mid = (l + r)>>1; 
    build(p<<1, l, mid); 
    build(p<<1|1, mid + 1, r); 
    t[p].dat = gcd(t[p<<1].dat, t[p<<1|1].dat); 
}

inline void change(LL p, LL x, LL val) {
	if (t[p].l == t[p].r) { t[p].dat += val; return ; }
	LL mid = (t[p].l + t[p].r)>>1; 
	if (x <= mid) change(p<<1, x, val); 
	else change(p<<1|1, x, val); 
	t[p].dat = gcd(t[p<<1].dat, t[p<<1|1].dat); 
}

inline LL query(LL p, LL l, LL r) {
	if (l <= t[p].l && r >= t[p].r) return t[p].dat; 
	LL mid = (t[p].l + t[p].r)>>1; 
	LL val = 0; 
	if (l <= mid) val = gcd(val, query(p<<1, l, r));  
	if (r > mid) val = gcd(val, query(p<<1|1, l, r)); 
	return abs(val); 
}

inline LL lowbit(LL x) { return x & -x; }

inline void add(LL x, LL val) {
	for (; x <= n; x += lowbit(x))
		c[x] += val; 
}

inline LL ask(LL x) {
	LL ans = 0; 
	for (; x; x -= lowbit(x))
		ans += c[x]; 
	return ans; 
}

int main() {
    read(n), read(m); 
    for (LL i = 1; i <= n; ++i) { 
        read(a[i]); 
        b[i] = a[i] - a[i-1]; 
    }
    build(1, 1, n); 
    for (LL i = 1; i <= m; ++i) {
        char opt[2]; LL l, r, val; 
        scanf("%s", opt); 
        if (opt[0] == 'Q') {
            read(l), read(r); 
            LL now = a[l] + ask(l); 
            printf("%lld\n", gcd(now, query(1, l+1, r))); 
        } else {
            read(l), read(r), read(val); 
            add(l, val); 
            add(r + 1, -val); 
            change(1, l, val); 
            if (r < n) change(1, r + 1, -val); 
        }
    }
    return 0; 
}
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
我们可以使用线段树来解决这个问题。对于每个区间,我们都可以预处理出其内部所有数的最大公约数,然后在询问时,查询覆盖该询问区间的所有区间最大公约数并取最大值即可。 具体地,我们可以将二维区间 $(i,j)$ 分别看作 $i$ 和 $j$ 两个维度,建立一颗二维线段树。对于每个节点 $(x,y)$,它表示的区间为 $[l_x,r_x]\times[l_y,r_y]$,其中 $l_x,r_x,l_y,r_y$ 分别表示该节点在 $x$ 和 $y$ 维度上的左右边界。我们可以在每个节点上维护一个值 $g_{x,y}$,表示区间 $[l_x,r_x]\times[l_y,r_y]$ 内部所有数的最大公约数。 对于每个节点 $(x,y)$,我们可以通过递归地计算其左右儿子节点的 $g$ 值来求出该节点的 $g$ 值。具体地,我们可以将节点 $(x,y)$ 表示的区间分成四个子区间,分别为 $[l_x,\lfloor\frac{l_x+r_x}{2}\rfloor]\times[l_y,\lfloor\frac{l_y+r_y}{2}\rfloor]$、$[\lfloor\frac{l_x+r_x}{2}\rfloor+1,r_x]\times[l_y,\lfloor\frac{l_y+r_y}{2}\rfloor]$、$[l_x,\lfloor\frac{l_x+r_x}{2}\rfloor]\times[\lfloor\frac{l_y+r_y}{2}\rfloor+1,r_y]$ 和 $[\lfloor\frac{l_x+r_x}{2}\rfloor+1,r_x]\times[\lfloor\frac{l_y+r_y}{2}\rfloor+1,r_y]$。然后我们可以递归地计算出这四个子区间的 $g$ 值,然后将它们合并起来得到该节点的 $g$ 值。合并方法为取四个子区间的 $g$ 值的最大公约数。 查询时,我们从根节点开始,递归地查找覆盖询问区间的节点,并将这些节点的 $g$ 值取最大值。具体地,对于当前节点 $(x,y)$,如果它表示的区间与询问区间不相交,则直接返回 1。否则,如果它表示的区间完全包含询问区间,则返回该节点的 $g$ 值。否则,我们将询问区间分成四个子区间,并递归地查询每个子区间,然后将它们的 $g$ 值取最大公约数作为当前节点的 $g$ 值返回。 时间复杂度为 $O((n+m)\log^2(n+m))$,其中 $n$ 和 $m$ 分别为二维区间的行数和列数。空间复杂度为 $O((n+m)\log^2(n+m))$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值