P1692 斐波那契数列(矩阵加速递推)

题目

题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
f ( 1 ) = 1 f(1) = 1 f(1)=1
f ( 2 ) = 1 f(2) = 1 f(2)=1
f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n) = f(n-1) + f(n-2) f(n)=f(n1)+f(n2) ( n ≥ 2 n ≥ 2 n2 n n n 为整数)
题目描述
请你求出 f ( n ) m o d    1000000007 f(n) \mod 1000000007 f(n)mod1000000007 的值。
输入输出格式
输入格式:
第1行:一个整数 n n n
输出格式:
第1行: f ( n ) m o d    1000000007 f(n) \mod 1000000007 f(n)mod1000000007 的值

题解

  • 前置技能:矩阵乘法
  • 关于矩阵乘法:定义 A n m , B m p A_{nm},B_{mp} Anm,Bmp
    A n m ∗ B m p = C n p A_{nm}*B_{mp}=C_{np} AnmBmp=Cnp
  • 也就是说这有第一个矩阵的列数等于第二个矩阵的行数时才能相乘
    C i , j = ∑ k = 1 m A i , k ∗ B k , j C_{i,j}=\sum_{k=1}^mA_{i,k}*B_{k,j} Ci,j=k=1mAi,kBk,j
  • C i , j C_{i,j} Ci,j等于 A A A矩阵第 i i i行与 B B B矩阵第 j j j列分别相乘再相加
  • 首先我们显然能在 O ( n ) O(n) O(n)的时间内求出斐波那契数列的第 n n n项,然而对于这道题我们需要优化一下

  • F = [ f n − 1 f n − 2 ]      F ′ = [ f n f n − 1 ] F=\begin{bmatrix}f_{n-1}&f_{n-2}\end{bmatrix} \ \ \ \ F'=\begin{bmatrix}f_n&f_{n-1}\end{bmatrix} F=[fn1fn2]    F=[fnfn1]

  • F ′ = F ∗ A F'=F*A F=FA

  • A = [ 1 1 1 0 ] A=\begin{bmatrix}1&1\\1 &0\end{bmatrix} A=[1110]

  • F 0 = [ f 2 f 1 ] = [ 1 1 ] F_0=\begin{bmatrix}f_2&f_1\end{bmatrix}=\begin{bmatrix}1&1\end{bmatrix} F0=[f2f1]=[11]

  • F i = A i − 2 ∗ F 0 = [ f i f i − 1 ] F_i=A^{i-2}*F_0=\begin{bmatrix}f_{i}&f_{i-1}\end{bmatrix} Fi=Ai2F0=[fifi1]
  • 然后我们就可以愉快的用矩阵乘法和矩阵快速幂在 O ( 2 3 l o g T ) O(2^3logT) O(23logT)( T T T为递推次数)的复杂度下过掉本题
  • p s : ps: ps:矩阵快速幂的原理和普通的快速幂原理相同快速幂模板

c o d e code code

#include <bits/stdc++.h> 
using namespace std; 
// const int maxn = 100000000 + 100;
#define mod 1000000007
typedef long long LL; 

template <typename T> 
inline void read(T &s) {
    s = 0; 
    T w = 1, ch = getchar(); 
    while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
    while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
    s *= w; 
}

LL k; 

void mul(LL f[2], LL a[2][2]) {
	LL c[2]; 
	memset(c, 0, sizeof(c)); 
	for (int j = 0; j < 2; ++j) 
		for (int k = 0; k < 2; ++k) 
			c[j] = (c[j] + (LL)f[k] * a[k][j]) % mod; 
	memcpy(f, c, sizeof(c)); 
}

void mul_self(LL a[2][2]) {
	LL c[2][2]; 
	memset(c, 0, sizeof(c)); 
	for (int i = 0; i < 2; ++i) 
		for (int j = 0; j < 2; ++j) 
			for (int k = 0; k < 2; ++k) 
				c[i][j] = (c[i][j] + (LL)a[i][k] * a[k][j]) % mod; 
	memcpy(a, c, sizeof(c)); 
}

int main() {
	read(k); 
	if (k <= 2) puts("1"); 
	else {
		LL f[2] = { 1, 1 }; 
		LL a[2][2] = {{1, 1}, {1, 0}}; 
		for (k = k - 2; k; k >>= 1) {
			if (k & 1) mul(f, a); 
			mul_self(a); 
		}
		printf("%lld\n", f[0]); 
	}
	return 0; 
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值