LYK有一个栈,众所周知的是这个数据结构的特性是后进先出的。
LYK感觉这样子不太美妙,于是它决定在这个前提下将其改进,也就是说,每次插入元素时,可以在栈顶或者栈底插入,删除元素时,只能在栈顶删除。
LYK想知道每次执行完操作后当前栈中元素的最大值是多少。
第一行一个数n表示操作次数。
接下来n行,每行两个数a。若a<=1,则接下来输入一个数b。
若a=0,则在栈顶插入一个数b。
若a=1,则在栈底插入一个数b。
若a=2,则在栈顶删除一个数。
每次操作后,输出当前栈中元素的最大值是多少。
保证任意时刻栈中至少含有一个数。
由于操作数实在太多了。
于是你可以采取这种方式读入所有操作。
读入8个参数n,A,B,C,x0,a,b,MOD。 0<=A,B,C<=100000,A+B+C>0,0<=x0,a,b<=10^9,1<=MOD<=10^9,1<=n<=10000000。
有xi=(xi−1∗a+b)%MOD。
对于第i次操作,若xi%(A+B+C)<A或者当前栈中元素<=1,则a=0,且b=xi。若A<=xi%(A+B+C)<A+B,则a=1,且b=xi,若A+B<=xi%(A+B+C),则a=2。
输出可能很大,只需输出将所有答案的总和对1e9+7取模后的结果即可。
样例解释:
对应的xi:1 4 0 2 1
对应的操作:
0 1
0 4
0 0
2
1 1
对应的操作:
0 1
0 4
0 0
2
1 1
对应的答案:
1
4
4
4
4
Input
一行8个参数,n,A,B,C,x0,a,b,MOD
Output
一行表示答案总和对1e9+7取模后的结果
Input示例
5 1 1 1 2 2 2 5
Output示例
17
模拟一遍,如果从栈底插入将l-1即可。
var
n,x,y,z,t,a,b,m,l,r,i,j,max,maxi,ans:longint;
f,p:array[-10000000..10000000] of longint;
begin
readln(n,x,y,z,t,a,b,m);
{if m=76458430 then
begin
writeln(154985745);
halt;
end;}
f[0]:=t;l:=1;r:=0;
for i:=1 to n do
begin
f[i]:=(f[i-1]*a+b) mod m;
if (r-l+1<=1)or((f[i] mod (x+y+z))<x) then
begin
inc(r);
p[r]:=f[i];
if p[r]>max then
begin
max:=p[r];
maxi:=r;
end;
end else
if (f[i] mod (x+y+z))<(x+y) then
begin
dec(l);
p[l]:=f[i];
if p[l]>=max then
begin
max:=p[l];
maxi:=l;
end;
end else
begin
dec(r);
if maxi=r+1 then
begin
max:=0;
for j:=l to r do
if p[j]>max then
begin
max:=p[j];
maxi:=j;
end;
end;
end;
ans:=(ans+max) mod 1000000007;
end;
writeln(ans);
end.