Druid数据库配置详细介绍


  
  
  1. Driver
  2. jdbc.driverClassName=com.mysql.jdbc.Driver
  3. 数据库链接,
  4. jdbc.url=jdbc:mysql://192.168.0.37:3306/project_demo?useUnicode=true&characterEncoding=UTF-8
  5. 帐号
  6. jdbc.username=root
  7. 密码
  8. jdbc.password=xxxx
  9. 检测数据库链接是否有效,必须配置
  10. jdbc.validationQuery=SELECT 'x'
  11. 初始连接数
  12. jdbc.initialSize=3
  13. 最大连接池数量
  14. jdbc.maxActive=10
  15. 去掉,配置文件对应去掉
  16. jdbc.maxIdle=20
  17. 配置0,当线程池数量不足,自动补充。
  18. jdbc.minIdle=0
  19. 获取链接超时时间为1分钟,单位为毫秒。
  20. jdbc.maxWait=60000
  21. 获取链接的时候,不校验是否可用,开启会有损性能。
  22. jdbc.testOnBorrow=false
  23. 归还链接到连接池的时候校验链接是否可用。
  24. jdbc.testOnReturn=false
  25. 此项配置为true即可,不影响性能,并且保证安全性。意义为:申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。
  26. jdbc.testWhileIdle=true
  27. 1.Destroy线程会检测连接的间隔时间
  28. 2.testWhileIdle的判断依据
  29. jdbc.timeBetweenEvictionRunsMillis=60000
  30. 一个链接生存的时间(之前的值:25200000,这个时间有点BT,这个结果不知道是怎么来的,换算后的结果是:25200000/1000/60/60 = 7个小时)
  31. jdbc.minEvictableIdleTimeMillis=300000
  32. 链接使用超过时间限制是否回收
  33. jdbc.removeAbandoned=true
  34. 超过时间限制时间(单位秒),目前为5分钟,如果有业务处理时间超过5分钟,可以适当调整。
  35. jdbc.removeAbandonedTimeout=300
  36. 链接回收的时候控制台打印信息,测试环境可以加上true,线上环境false。会影响性能。
  37. jdbc.logAbandoned=false


这周做整体配置更新处理。以观后效。

常用数据库validationQuery检查语句

 数据库 validationQuery
 Oracle select 1 from dual
 mysql select 1
 DB2 select 1 from sysibm.sysdummy1
 microsoft sql select 1
 hsqldb select 1 from INFORMATION_SCHEMA.SYSTEM_USERS
 postgresql select version()
 ingres select 1
 derby select 1
 H2 select 1

ps 也可以自己定义一个表数据较少,简单的查询也可以。


  • DRUID介绍

    DRUID是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0、DBCP、PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB连接池(据说是目前最好的连接池,不知道速度有没有BoneCP快)。

 

  • 配置参数

和其它连接池一样DRUID的DataSource类为:com.alibaba.druid.pool.DruidDataSource,基本配置参数如下:

 

配置缺省值说明
name 配置这个属性的意义在于,如果存在多个数据源,监控的时候可以通过名字来区分开来。 
如果没有配置,将会生成一个名字,格式是:”DataSource-” + System.identityHashCode(this)
jdbcUrl 连接数据库的url,不同数据库不一样。例如: 
mysql : jdbc:mysql://10.20.153.104:3306/druid2 
oracle : jdbc:oracle:thin:@10.20.149.85:1521:ocnauto
username 连接数据库的用户名
password 连接数据库的密码。如果你不希望密码直接写在配置文件中,可以使用ConfigFilter。详细看这里:https://github.com/alibaba/druid/wiki/%E4%BD%BF%E7%94%A8ConfigFilter
driverClassName根据url自动识别这一项可配可不配,如果不配置druid会根据url自动识别dbType,然后选择相应的driverClassName(建议配置下)
initialSize0初始化时建立物理连接的个数。初始化发生在显示调用init方法,或者第一次getConnection时
maxActive8最大连接池数量
maxIdle8已经不再使用,配置了也没效果
minIdle 最小连接池数量
maxWait 获取连接时最大等待时间,单位毫秒。配置了maxWait之后,缺省启用公平锁,并发效率会有所下降,如果需要可以通过配置useUnfairLock属性为true使用非公平锁。
poolPreparedStatementsfalse是否缓存preparedStatement,也就是PSCache。PSCache对支持游标的数据库性能提升巨大,比如说oracle。在mysql下建议关闭。
maxOpenPreparedStatements-1要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。在Druid中,不会存在Oracle下PSCache占用内存过多的问题,可以把这个数值配置大一些,比如说100
validationQuery 用来检测连接是否有效的sql,要求是一个查询语句。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会其作用。
testOnBorrowtrue申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。
testOnReturnfalse归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能
testWhileIdlefalse建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。
timeBetweenEvictionRunsMillis 有两个含义: 
1) Destroy线程会检测连接的间隔时间2) testWhileIdle的判断依据,详细看testWhileIdle属性的说明
numTestsPerEvictionRun 不再使用,一个DruidDataSource只支持一个EvictionRun
minEvictableIdleTimeMillis  
connectionInitSqls 物理连接初始化的时候执行的sql
exceptionSorter根据dbType自动识别当数据库抛出一些不可恢复的异常时,抛弃连接
filters 属性类型是字符串,通过别名的方式配置扩展插件,常用的插件有: 
监控统计用的filter:stat日志用的filter:log4j防御sql注入的filter:wall
proxyFilters 

类型是List<com.alibaba.druid.filter.Filter>,如果同时配置了filters和proxyFilters,是组合关系,并非替换关系

 

  • 使用方法

DB数据源的使用方法也就是2种,一种是在代码中写死通过NEW操作符创建DataSSource,然后set一些连接属性,这里不在累述;另外一种是基于SPRING的配置方法,然后让SPRING的Context自动加载配置(以下配置文件默认都在项目根目录下conf文件夹中)

1、属性文件:application.properties(DataSource连接参数)

 

jdbc.driverClassName=com.mysql.jdbc.Driver 
jdbc.url=jdbc:mysql://127.0.0.1:3306/test 
jdbc.username=root 
jdbc.password=1qaz!QAZ

 

2、SPRING配置文件:spring-base.xml

 

<?xml version=”1.0” encoding=”UTF-8”?> 
<beans xmlns=” http://www.springframework.org/schema/beans“ 
 xmlns:xsi=” http://www.w3.org/2001/XMLSchema-instance” xmlns:batch=” http://www.springframework.org/schema/batch“ 
 xsi:schemaLocation=” http://www.springframework.org/schema/beans 
           http://www.springframework.org/schema/beans/spring-beans-4.0.xsd“>

 

 <bean id=”propertyConfigure” 
  class=”org.springframework.beans.factory.config.PropertyPlaceholderConfigurer”> 
  <property name=”locations”> 
   <list> 
    <value>./conf/application.properties</value> 
   </list> 
  </property> 
 </bean>

 

 <bean id=”dataSource” class=”com.alibaba.druid.pool.DruidDataSource” 
  init-method=”init” destroy-method=”close”> 
  <property name=”driverClassName” value=”{jdbc.driverClassName}" /&gt;&nbsp;<br>&nbsp;&nbsp;&lt;property name="url" value="{jdbc.url}” /> 
  <property name=”username” value=”{jdbc.username}" /&gt;&nbsp;<br>&nbsp;&nbsp;&lt;property name="password" value="{jdbc.password}” /> 
  <!– 配置初始化大小、最小、最大 –> 
  <property name=”initialSize” value=”1” /> 
  <property name=”minIdle” value=”1” /> 
  <property name=”maxActive” value=”10” />

  <!– 配置获取连接等待超时的时间 –> 
  <property name=”maxWait” value=”10000” />

  <!– 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒 –> 
  <property name=”timeBetweenEvictionRunsMillis” value=”60000” />

  <!– 配置一个连接在池中最小生存的时间,单位是毫秒 –> 
  <property name=”minEvictableIdleTimeMillis” value=”300000” />

  <property name=”testWhileIdle” value=”true” />

  <!– 这里建议配置为TRUE,防止取到的连接不可用 –> 
  <property name=”testOnBorrow” value=”true” /> 
  <property name=”testOnReturn” value=”false” />

  <!– 打开PSCache,并且指定每个连接上PSCache的大小 –> 
  <property name=”poolPreparedStatements” value=”true” /> 
  <property name=”maxPoolPreparedStatementPerConnectionSize” 
   value=”20” />

  <!– 这里配置提交方式,默认就是TRUE,可以不用配置 –>

  <property name=”defaultAutoCommit” value=”true” />

  <!– 验证连接有效与否的SQL,不同的数据配置不同 –> 
  <property name=”validationQuery” value=”select 1 ” /> 
  <property name=”filters” value=”stat” /> 
  <property name=”proxyFilters”> 
   <list> 
    <ref bean=”logFilter” /> 
   </list> 
  </property> 
 </bean>

 

 <bean id=”logFilter” class=”com.alibaba.druid.filter.logging.Slf4jLogFilter”> 
  <property name=”statementExecutableSqlLogEnable” value=”false” /> 
 </bean>

</beans>

上面红色标注部分为监控DB池连接执行监控,后面在做详细说明.

 

  • 监控方式

1、WEB方式监控配置

<servlet> 
     <servlet-name>DruidStatView</servlet-name> 
     <servlet-class>com.alibaba.druid.support.http.StatViewServlet</servlet-class> 
 </servlet> 
 <servlet-mapping> 
     <servlet-name>DruidStatView</servlet-name> 
     <url-pattern>/druid/*</url-pattern> 
 </servlet-mapping> 
 <filter> 
  <filter-name>druidWebStatFilter</filter-name> 
  <filter-class>com.alibaba.druid.support.http.WebStatFilter</filter-class> 
  <init-param> 
   <param-name>exclusions</param-name> 
   <param-value>/public/*,*.js,*.css,/druid*,*.jsp,*.swf</param-value> 
  </init-param> 
  <init-param> 
   <param-name>principalSessionName</param-name> 
   <param-value>sessionInfo</param-value> 
  </init-param> 
  <init-param> 
   <param-name>profileEnable</param-name> 
   <param-value>true</param-value> 
  </init-param> 
 </filter> 
 <filter-mapping> 
  <filter-name>druidWebStatFilter</filter-name> 
  <url-pattern>/*</url-pattern> 
 </filter-mapping>

 

把上面servlet配置添加到项目web.xml即可。然后运行Tomcat,浏览器输入 http://IP:PROT/druid

就可以打开Druid的监控页面了.

2、日志文件监控

Druid提供了多种日志文件监控 commons-logging、log4j等,这里我们主要使用slf4j和logback来进行日志监控配置。

首先要引入slf4j和logback相关的jar文件(从Maven公共仓库下载 http://search.maven.org/

<slf4j.version>1.7.7</slf4j.version> 
<logback.version>1.1.2</logback.version>

 

<dependency> 
    <groupId>org.slf4j</groupId> 
    <artifactId>slf4j-api</artifactId> 
    <version>{slf4j.version}&lt;/version&gt;&nbsp;<br>&nbsp;&lt;/dependency&gt;&nbsp;<br>&lt;dependency&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;groupId&gt;ch.qos.logback&lt;/groupId&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;artifactId&gt;logback-access&lt;/artifactId&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;version&gt;{logback.version}</version> 
</dependency> 
<dependency> 
    <groupId>ch.qos.logback</groupId> 
    <artifactId>logback-core</artifactId> 
    <version>{logback.version}&lt;/version&gt;&nbsp;<br>&lt;/dependency&gt;&nbsp;<br>&lt;dependency&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;groupId&gt;ch.qos.logback&lt;/groupId&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;artifactId&gt;logback-classic&lt;/artifactId&gt;&nbsp;<br>&nbsp;&nbsp;&nbsp;&nbsp;&lt;version&gt;{logback.version}</version> 
</dependency> 

 

接下配置logback的配置文件(./conf/logback.xml)

 

<configuration>

 <appender name=”STDOUT” class=”ch.qos.logback.core.ConsoleAppender”> 
  <layout class=”ch.qos.logback.classic.PatternLayout”> 
   <Pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n 
   </Pattern> 
  </layout> 
 </appender>

 <appender name=”FILE” class=”ch.qos.logback.core.FileAppender”> 
  <file>./logs/druid_info.log</file> 
  <layout class=”ch.qos.logback.classic.PatternLayout”> 
   <Pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</Pattern> 
  </layout> 
  <filter class=”ch.qos.logback.classic.filter.ThresholdFilter”> 
   <level>debug</level> 
  </filter> 
 </appender>

 <root level=”DEBUG”> 
  <appender-ref ref=”FILE” /> 
 </root> 
</configuration>

 

最后就是写一个测试类进行测试

public class TestMain {

 public static void loadLoggerContext() { 
  System.getProperties().put(“logback.configurationFile”, “./conf/logback.xml”); 
  LoggerContext lc = (LoggerContext) LoggerFactory.getILoggerFactory(); 
  StatusPrinter.setPrintStream(System.err); 
  StatusPrinter.print(lc); 
 }

 public static void main(String[] args) { 
  try { 
   loadLoggerContext(); 
   FileSystemXmlApplicationContext context = new FileSystemXmlApplicationContext(“./conf/spring-base.xml”); 

  } catch (Exception e) { 
   System.out.println(e); 
  } 
 } 
}

本文使用Druid的连接池替换掉原来的C3P0连接池,然后配置Druid的相关属性,完成对Spring web工程的JDBC监控。

其实,我采用Druid替换其它连接池,最关键的一个理由是Druid有对SQL执行的监控统计功能。 :)

本文就是来看看看Druid的监控功能。~~~ 一起玩起来 : )

Druid介绍

Druid是一个JDBC组件库,包括数据库连接池、SQL Parser等组件。DruidDataSource是最好的数据库连接池。参考Druid wiki上的文章 <<各连接池的性能比较>>

Druild包获取

Maven工程中添加druid依赖包:

        <!-- https://mvnrepository.com/artifact/com.alibaba/druid -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.0.26</version>
        </dependency>

Druid使用

替换C3P0连接池

Web工程原先采用C3P0连接池的配置:

    <!-- 配置数据源-C3PO -->
    <bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
        destroy-method="close">
        <property name="driverClass" value="${jdbc.driverClassName}" />
        <property name="jdbcUrl" value="${jdbc.url}" />
        <property name="user" value="${jdbc.username}" />
        <property name="password" value="${jdbc.password}" />
        <property name="autoCommitOnClose" value="false" />
        <property name="maxIdleTime" value="${cpool.maxIdleTime}" />
        <property name="checkoutTimeout" value="${cpool.checkoutTimeout}" />
        <property name="initialPoolSize" value="${cpool.minPoolSize}" />
        <property name="minPoolSize" value="${cpool.minPoolSize}" />
        <property name="maxPoolSize" value="${cpool.maxPoolSize}" />
        <property name="acquireIncrement" value="${cpool.acquireIncrement}" />
        <property name="maxIdleTimeExcessConnections" value="${cpool.maxIdleTimeExcessConnections}" />
    </bean>

改成Druid连接池DruidDataSource

    <!-- 配置数据源-druid -->
    <bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource"
        destroy-method="close">
        <property name="url" value="${jdbc.url}" />
        <property name="username" value="${jdbc.username}" />
        <property name="password" value="${jdbc.password}" />
        <property name="maxActive" value="20" />
        <property name="initialSize" value="1" />
        <property name="maxWait" value="60000" />
        <property name="minIdle" value="1" />
        <property name="timeBetweenEvictionRunsMillis" value="60000" />
        <property name="minEvictableIdleTimeMillis" value="300000" />
        <property name="testWhileIdle" value="true" />
        <property name="testOnBorrow" value="false" />
        <property name="testOnReturn" value="false" />
        <property name="poolPreparedStatements" value="true" />
        <property name="maxOpenPreparedStatements" value="20" />
    </bean>

StatViewServlet配置

Druid内置提供了一个StatViewServlet用于展示Druid的统计信息。

这个StatViewServlet的用途包括:

  • 提供监控信息展示的html页面
  • 提供监控信息的JSON API

StatViewServlet是一个标准的javax.servlet.http.HttpServlet,需要配置在你web应用中的WEB-INF/web.xml中。

    <servlet>
        <servlet-name>DruidStatView</servlet-name>
        <servlet-class>com.alibaba.druid.support.http.StatViewServlet</servlet-class>
    </servlet>
    <servlet-mapping>
        <servlet-name>DruidStatView</servlet-name>
        <url-pattern>/druid/*</url-pattern>
    </servlet-mapping>

配置完之后,可以通过如下格式的地址在浏览器访问查看。

http:/<host>:<port>/<context>/druid

举个例子:

如果host为localhost,port为8080,context为Demo,那么,可以通过如下URL访问。

http://localhost:8080/Demo/druid

那么问题来了

查看的时候,能否提供用户名和密码作为验证呢,而不是直接就能看JDBC执行的状态信息?

答案是肯定的。

需要在上述配置的情况下,配置Servlet的 loginUsername 和 loginPassword这两个初始参数。

如:

    <servlet>
        <servlet-name>DruidStatView</servlet-name>
        <servlet-class>com.alibaba.druid.support.http.StatViewServlet</servlet-class>
      <init-param>  
         <!-- 用户名 -->  
         <param-name>loginUsername</param-name>  
         <param-value>druid</param-value>  
      </init-param>  
      <init-param>  
        <!-- 密码 -->  
        <param-name>loginPassword</param-name>  
        <param-value>druid</param-value>  
      </init-param>  
    </servlet>
    <servlet-mapping>
        <servlet-name>DruidStatView</servlet-name>
        <url-pattern>/druid/*</url-pattern>
    </servlet-mapping>

配置好之后,登录之后才能访问。

StatFilter配置

Druid内置提供一个StatFilter,用于统计监控信息。

如果没有配置StatFilter,那么,我们无法获取相关统计信息。

比如:

无法看到SQL监控TAB上的数据。

URI监控TAB中,无法获取JDBC相关的SQL执行信息。

 

如何展示出这些数据呢? 解决的办法就是配置StatFilter。

StatFilter的别名是stat,在spring中使用别名配置方式如下:

<property name="filters" value="stat" />

将上述stat添加到dataSource中去即可。

    <!-- 配置数据源-druid -->
    <bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource"
        destroy-method="close">
        <property name="url" value="${jdbc.url}" />
        <property name="username" value="${jdbc.username}" />
        <property name="password" value="${jdbc.password}" />
        <property name="filters" value="stat" />
        <property name="maxActive" value="20" />
        <property name="initialSize" value="1" />
        <property name="maxWait" value="60000" />
        <property name="minIdle" value="1" />
        <property name="timeBetweenEvictionRunsMillis" value="60000" />
        <property name="minEvictableIdleTimeMillis" value="300000" />
        <property name="testWhileIdle" value="true" />
        <property name="testOnBorrow" value="false" />
        <property name="testOnReturn" value="false" />
        <property name="poolPreparedStatements" value="true" />
        <property name="maxOpenPreparedStatements" value="20" />
    </bean>

添加完毕之后,再来看一下上述两个TAB ( SQL监控以及 URI监控)下JDBC的内容:

在SQL监控页面,可以很清楚地看到目前执行SQL的具体情况,包括某条SQL语句执行的时间(平均、最慢)、SQL执行次数、SQL执行出错的次数等。这些信息,可以作为系统SQL语句优化的一个指标。

在URI监控页,可以清楚地看到执行某个动作,关联SQL有多少,请求次数、执行时间、并发数等信息。

StatFilter可以和其他的Filter配置使用,比如, 与log4j组合使用。

 <property name="filters" value="stat,log4j" />

这样,我们在点击 “记录日志并重置” 的按钮时,Console中就会输入JDBC相关日志,日志采用JSON的方式记录,如:

[INFO ][2016-11-15 20:11:11,677] com.alibaba.druid.pool.DruidDataSourceStatLoggerImpl.log(DruidDataSourceStatLoggerImpl.java:77) - 
{"url":"jdbc:mysql://127.0.0.1:3306/Demo?useUnicode=true&characterEncoding=utf-8&zeroDateTimeBehavior=convertToNull","dbType":"mysql","name":"DataSource-958465974","activeCount":0,"poolingCount":1,"connectCount":0,"closeCount":0}

内置Filter别名和对应的Filter类名如下:

别名Filter类名
defaultcom.alibaba.druid.filter.stat.StatFilter
statcom.alibaba.druid.filter.stat.StatFilter
mergeStatcom.alibaba.druid.filter.stat.MergeStatFilter
encodingcom.alibaba.druid.filter.encoding.EncodingConvertFilter
log4jcom.alibaba.druid.filter.logging.Log4jFilter
log4j2com.alibaba.druid.filter.logging.Log4j2Filter
slf4jcom.alibaba.druid.filter.logging.Slf4jLogFilter
commonloggingcom.alibaba.druid.filter.logging.CommonsLogFilter

慢SQL记录

StatFilter属性slowSqlMillis用来配置SQL慢的标准,执行时间超过slowSqlMillis的就是慢。slowSqlMillis的缺省值为3000,也就是3秒。

<bean id="stat-filter" class="com.alibaba.druid.filter.stat.StatFilter">
    <property name="slowSqlMillis" value="10000" />
    <property name="logSlowSql" value="true" />
</bean>

在上面的配置中,slowSqlMillis被修改为10秒,并且通过日志输出执行慢的SQL。

slowSqlMillis属性也可以通过connectProperties来配置,例如:

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-method="close">
    ... ...
    <property name="filters" value="stat" />
    <property name="connectionProperties" value="druid.stat.slowSqlMillis=5000" />
  </bean>

Wallfilter配置

配置WallFilter,可以起到拦截作用,从而形成SQL的白名单和黑名单。

缺省情况下,配置装载的目录如下:

数据库类型目录
mysqlMETA-INF/druid/wall/mysql
oracleMETA-INF/druid/wall/oracle
sqlserverMETA-INF/druid/wall/sqlserver
postgresMETA-INF/druid/wall/postgres

从配置目录中以下文件中读取配置:

  deny-variant.txt
  deny-schema.txt
  deny-function.txt
  permit-variant.txt
  permit-variant.txt

指定配置装载的目录是可以指定,例如:

  <bean id="wall-filter-config" class="com.alibaba.druid.wall.WallConfig" init-method="init">
      <!-- 指定配置装载的目录  -->
      <property name="dir" value="META-INF/druid/wall/mysql" />
  </bean>

  <bean id="wall-filter" class="com.alibaba.druid.wall.WallFilter">
      <property name="dbType" value="mysql" />
      <property name="config" ref="wall-filter-config" />
  </bean>

  <bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-method="close">
      ...
      <property name="proxyFilters">
          <list>
              <ref bean="wall-filter"/>
          </list>
      </property>
  </bean>

本文实例中,采用如下的配置:


    <bean id="wall-filter-config" class="com.alibaba.druid.wall.WallConfig"
        init-method="init">
        <!-- 指定配置装载的目录 -->
        <property name="dir" value="META-INF/druid/wall/mysql" />
    </bean>

    <bean id="wall-filter" class="com.alibaba.druid.wall.WallFilter">
        <property name="dbType" value="mysql" />
        <property name="config" ref="wall-filter-config" />
    </bean>

    <!-- 配置数据源-druid -->
    <bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource"
        destroy-method="close">
        <property name="url" value="${jdbc.url}" />
        <property name="username" value="${jdbc.username}" />
        <property name="password" value="${jdbc.password}" />
        <property name="filters" value="stat" />
        <property name="maxActive" value="20" />
        <property name="initialSize" value="1" />
        <property name="maxWait" value="60000" />
        <property name="minIdle" value="1" />
        <property name="timeBetweenEvictionRunsMillis" value="60000" />
        <property name="minEvictableIdleTimeMillis" value="300000" />
        <property name="testWhileIdle" value="true" />
        <property name="testOnBorrow" value="false" />
        <property name="testOnReturn" value="false" />
        <property name="poolPreparedStatements" value="true" />
        <property name="maxOpenPreparedStatements" value="20" />
        <property name="proxyFilters">
            <list>
                <ref bean="wall-filter" />
            </list>
        </property>
    </bean>

配置好Wallfilter, 我们就可以看到SQL防火墙 TAB下的内容了。

因为是默认状态,没有配置任何拦截的属性信息,所以,SQL的执行都在白名单中展示出来了。

配置Spring和jdbc的关联

最后,还有一个Tab的内容没有展示,那就是Spring监控。

Druid提供了Spring和Jdbc的关联监控。

本文在Spring的applicationContext.xml配置文件中配置如下信息,支持方法名的拦截。

    <bean id="druid-stat-interceptor"
        class="com.alibaba.druid.support.spring.stat.DruidStatInterceptor">
    </bean>

    <bean id="druid-stat-pointcut" class="org.springframework.aop.support.JdkRegexpMethodPointcut"
        scope="prototype">
        <property name="patterns">
            <list>
                <value>com.demo.mybatis.auto.*</value>
                <value>com.demo.mybatis.manual.*</value>
            </list>
        </property>
    </bean>
    <aop:config>
        <aop:advisor advice-ref="druid-stat-interceptor"
            pointcut-ref="druid-stat-pointcut" />
    </aop:config>

 

完工后,我们再去看一下,Spring监控的TAB内容,就可以看到相关的MyBatis Mapper执行信息。

在Spring监控页,可以显示相关DAO执行的方法,方法执行的次数、执行的时间等信息。

小结

通过上述几个部分的配置,监控页面上所有的TAB都可以查看信息了。

当然,Druid还有很多其他的功能,在这篇文章中就一一展示,有兴趣的朋友可以在Druid的Github网页上查看。

                </div>
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值