pymysql(等同于MySQLdb)
说明:pymysql与MySQLdb模块的使用基本相同,学会pymysql,使用MySQLdb也就不是问题
安装API模块
pip install pymysql
执行
import pymysql
# 创建连接
conn = pymysql.connect(host='172.25.50.13', port=3306, user='root', passwd='123456', db='test')
# 开启自动提交SQL,如果这里不设置,以后的命令需要执行
# conn.commit()来提交执行,否则都在内存中
conn.autocommit(True)
# 创建游标
cur = conn.cursor()
# 执行普通SQL,并返回受影响行数
effect_row = cur.execute("insert into t1 values (1, 'Boss')")
print(effect_row) # out:1
#
# 执行带占位符的SQL,并返回受影响行数
effect_row = cur.execute("insert into t1 values (2,'%s')"
%"xiaodi")
print(effect_row) # out:1
#
# 执行多行数据的SQL,并返回受影响行数
effect_row = cur.executemany("insert into t1(id,name)
values (%s, %s)" , [(3,'zhubajie'),(4,'sunwukong')])
print(effect_row) # out: 2
# 获取最新自增ID,注意:如果该表的列是非自增类型的,则获取到的数值为0
id = cur.lastrowid
print(id) # out :4
cur.execute('select * from t1')
# 获取第一行数据
row_1 = cur.fetchone()
print(row_1) # out: (1, 'Boss')
# 获取前n行数据
row_2 = cur.fetchmany(3)
print(row_2) # out: ((2, 'xiaodi'), (3, 'zhubajie'),
(4, 'sunwukong'))
# 获取所有数据
row_3 = cur.fetchall()
print(row_3) # out: ((1, 'Boss'), (2, 'xiaodi'),
(3, 'zhubajie'), (4, 'sunwukong'))
# 提交
conn.commit()
# 关闭游标
cur.close()
# 关闭连接
conn.close()
- 注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
cur.scroll(1,mode=’relative’) # 相对当前位置移动,数字1 也可以为负数,只是移动方向不同而已
cur.scroll(2,mode=’absolute’) # 相对绝对位置移动
- 扩展:通过pymysql获取Dict数据类型
从上边的案例可以看出,pymysql获取的结果,是以元组的形式输出,对于不了解表结构的人来说,无疑不知道每个元素对应的列。
因此,如果想要或者字典类型的数据,需要创建游标的时候,设置返回的数据集类型,即:
# 游标设置为字典类型
cur = conn.cursor(cursor=pymysql.cursors.DictCursor)
Python MySQL ORM框架–> SQLAlchemy
- SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
- 说明:
SQLAchemy 本身无法操作数据库,其本质上是依赖pymysql.MySQLdb,mssql等第三方插件。
Dialect用于和数据库API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作
配置SQLAlchemy,使用不同API
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
普通使用
- 使用 Engine/ConnectionPooling/Dialect 进行数据库操作:Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
from sqlalchemy import create_engine
# 等效于创建游标
engine = create_engine("mysql+pymysql://root:123
@127.0.0.1:3306/t1", max_overflow=5)
# 执行SQL
cur = engine.execute(
"INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
)
# 其余操作同游标操作一样,就不一一列举。
ORM功能使用
- 使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
创建表和删除表
- sqlalchemy 创建表和删除表、
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey,
UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
- 创建连接
engine = create_engine("mysql+pymysql://root:123456
@127.0.0.1:3306/test", max_overflow=5)
- 创建基类。这个是固定写法,创建表必须这么写
Base = declarative_base()
- 创建单表
class Users(Base):
# 创建表
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16))
# 创建联合索引
__table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
)
- 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True)
class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
- 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
class Server(Base):
__tablename__ = 'server'
id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22)
def init_db():
Base.metadata.create_all(engine)
def drop_db():
Base.metadata.drop_all(engine)
操作表
要想操作表,需要经过如下2个步骤
- 步骤1:创建session
Session = sessionmaker(bind=engine)
session = Session()
- 步骤2:执行SQL。这里需要注意,如果是新增的话,需要新建对象,如下
# 新增单条数据
obj = Users(name="guanyu", extra='hanjiang')
session.add(obj)
# 新增多条数据
session.add_all([
Users(name="liubei", extra='leader'),
Users(name="zhangfei", extra='xiaodi'),
])
session.commit()
- 其他的SQL,仅需要执行session.query方法,进行相关操作即可
1)删除表数据
# 删除user表中id大于2的条目
session.query(Users).filter(Users.id > 2).delete()
session.commit()
2)修改表数据
# 更新user表中id大于2的name列为099
session.query(Users).filter(Users.id > 2).update({"name" : "099"})
# 更新user表中id大于2的name列,在原字符串后边增加099
session.query(Users).filter(Users.id > 2).update({Users.name:
Users.name + "099"}, synchronize_session=False)
# 更新user表中id大于2的num列,使最终值在原来数值基础上加1
session.query(Users).filter(Users.id > 2).update(
{"num": Users.num + 1}, synchronize_session="evaluate")
# 数字相加,必须设置synchronize_session="evaluate"
session.commit()
3)查询数据
ret = session.query(Users).all() # 查询所有
sql = session.query(Users) # 查询生成的sql
print(sql)
ret = session.query(Users.name, Users.extra).all()
#查询User表的name和extra列的所有数据
ret = session.query(Users).filter_by(name='alex').all()
# 取全部name列为alex的数据
ret = session.query(Users).filter_by(name='alex').first()
# 第一个匹配name列为alex的数据
Ps: ret是一个对象列表。这个对象可以通过 “对象[索引].字段”来获取对应的值
- 其他
条件
ret = session.query(Users).filter_by(name='alex').all() #
ret = session.query(Users).filter(Users.id > 1,
Users.name == 'eric').all()
且的关系
ret = session.query(Users).filter(Users.id.between(1, 3),
Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
~表示非。就是not in的意思
ret =session.query(Users).filter(Users.id.in_(session.query
(Users.id).filter_by(name='eric'))).all()
联表查询 :
from sqlalchemy import and_, or_
且和or的关系
ret = session.query(Users).filter( and_(Users.id > 3, Users.name == 'eric')).all()
条件以and方式排列
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
条件以or方式排列
ret = session.query(Users).filter(
or_( #这部分表示括号中的条件都以or的形式匹配
Users.id < 2, # 或者 or User.id < 2
and_(Users.name == 'eric', Users.id > 3),
# 表示括号中这部分进行and匹配
Users.extra != ""
)).all()
通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all()
# 表示not like
限制 limit用法
ret = session.query(Users)[1:2]
排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(),
Users.id.asc()).all()
# 按照name从大到小排列,如果name相同,按照id从小到大排列
分组
from sqlalchemy.sql import func
ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).
having(func.min(Users.id) >2).all()
# having对聚合的内容再次进行过滤
连表
ret = session.query(Users, Favor).
filter(Users.id == Favor.nid).all()
ret = session.query(Person).join(Favor).all()
# 默认是inner join
ret = session.query(Person).join(Favor, isouter=True).all()
# isouter表示是left join
组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() #union默认会去重
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all() # union_all不去重