无监督算法汇总

博客主要介绍了EM算法,包含其原理、例子分析及应用,如在GMM中的讲解,还提及了孤立森林相关内容,这些均属于信息技术领域的数据挖掘算法知识。
数学建模中常见的算法模型丰富多样,涵盖了数值分析、规划、智能优化、机器学习等多个领域。 ### 数值分析类 - **最小二乘法**:用于数据拟合和参数估计,通过最小化误差的平方和寻找数据的最佳函数匹配。 - **微分方程建模**:把实际问题转化为微分方程的定解问题,一般步骤为确定研究量和坐标系,找出基本规律,列出方程和定解条件。常见列方程的方法有多种,能解决许多涉及变化率的实际问题 [^2]。 - **GM(1,1)**:使用原始的离散非负数据列,经一次累加生成新的较有规律的数据列,建立一阶微分方程模型,得到原始数据的近似估计值以进行后续发展预测 [^4]。 ### 规划类 - **线性规划**:在一组线性约束条件下,求一个线性目标函数的最大值或最小值。 - **整数规划**:要求部分或全部决策变量取整数值的规划问题。 - **动态规划**:将多阶段决策问题分解为一系列相互联系的单阶段子问题,通过求解子问题来得到原问题的最优解。 - **贪心算法**:在每一步选择中都采取当前状态下最好或最优的选择,希望最终导致全局最优解。 - **分支定界法**:通过分支和限界的方法,逐步缩小解空间,找到最优解。 ### 智能优化类 - **蒙特卡洛方法**:利用随机抽样来求解数学问题或物理问题,通过大量随机试验来估计结果。 - **随机游走算法**:基于随机过程,在状态空间中随机移动以寻找最优解。 - **遗传算法**:模拟自然选择和遗传机制,通过选择、交叉和变异等操作,不断进化种群以找到最优解。 - **粒子群算法**:模拟鸟群或鱼群的群体行为,通过粒子之间的信息共享和协作,寻找最优解。 ### 机器学习类 - **神经网络算法**:模仿人类神经系统的结构和功能,由大量神经元组成,通过训练学习数据中的模式和规律。 - **人工智能算法**:涵盖范围广泛,包括机器学习、深度学习等多种技术,用于解决复杂的智能问题。 - **模糊数学**:处理模糊性和不确定性的数学方法,通过模糊集合和模糊逻辑进行推理和决策。 - **时间序列分析**:用于分析和预测随时间变化的数据序列,如经济数据、气象数据等。 - **马尔可夫链**:描述随机过程的一种数学模型,具有无后效性,即未来状态只与当前状态有关。 - **决策树**:通过构建树状模型进行分类和预测,每个内部节点是一个属性上的测试,每个分支是一个测试输出,每个叶节点是一个类别或值。 - **支持向量机**:用于分类和回归分析的监督学习模型,通过寻找最优的超平面来划分不同类别的数据。 - **朴素贝叶斯算法**:基于贝叶斯定理和特征条件独立假设的分类算法,计算每个类别的概率,选择概率最大的类别作为预测结果。 - **KNN算法**:通过计算待分类样本与已知样本之间的距离,选择距离最近的K个样本,根据这K个样本的类别进行投票,确定待分类样本的类别。代码示例如下: ```matlab % 示例数据 X = [1 1; 2 2; 3 3; 4 4; 5 5]; y = [0; 0; 1; 1; 1]; % KNN模型 knnModel = fitcknn(X, y, 'NumNeighbors', 3); % 预测 X_test = [3 3]; label = predict(knnModel, X_test); disp(['Prediction: ', num2str(label)]); ``` - **AdaBoost算法**:一种集成学习算法,通过迭代训练多个弱分类器,将它们组合成一个强分类器。 - **集成学习算法**:将多个弱学习器组合成一个强学习器,提高模型的性能和泛化能力。 - **梯度下降算法**:用于求解函数的最小值,通过迭代更新参数,沿着梯度的反方向逐步逼近最优解。 - **主成分分析**:通过线性变换将原始数据转换为一组各维度线性无关的主成分,提取数据的主要信息,减少数据的维度。 - **回归分析**:用于研究自变量和因变量之间的关系,常见的有线性回归,用于预测一个连续的输出变量 [^1]。 - **聚类分析**:将数据对象分组为多个类或簇,使得同一簇内的对象相似度较高,不同簇内的对象相似度较低。 - **关联分析**:挖掘数据集中不同项目之间的关联关系,例如关联规则挖掘(Apriori Algorithm) [^3]。 - **非线性优化**:目标函数或约束条件中包含非线性函数的优化问题。 - **深度学习算法**:基于深度神经网络的机器学习算法,通过多层神经网络自动学习数据的复杂特征和模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值