Prometheus 配置文件中 metric_relabel_configs 配置

Prometheus 从数据源拉取数据后,会对原始数据进行编辑

其中 metric_relabel_configs是 Prometheus 在保存数据前的最后一步标签重新编辑(relabel_configs)。所以,哪怕你将 metric_relabel_configs模块放在 job_name模块的最前端,Prometheus 解析编辑文件后,也会将 metric_relabel_configs放在最后。

metric_relabel_configs 模块和 relabel_config 模块很相似。metric_relabel_configs一个很常用的用途:将监控不需要的数据,直接丢掉,不在Prometheus 中保存。

 

重新标记操作一般常见的情况


  1. 删除不必要的指标。
  2. 从指标中删除敏感或不需要的标签。
  3. 添加、编辑或者修改指标的标签值或者标签格式。

 

一、删除不需要的指标(metric)


prometheus 默认会将所有拉取到的 metrics 都写入自己的存储中。如果某些 metrics 对我们并没有太多意义,可以设置直接丢掉,减少磁盘空间的浪费。‘node_netstat_Icmp_OutMsgs’ 指标数据。

  metric_relabel_configs:
   - source_labels: [ __name__ ]
     regex: 'node_netstat_Icmp_OutMsgs'
     action: drop

使用 source_labels 参数选择要要操作的指标,并且还需要一组标签名称。
示例中使用 __name__ 标签,此标签是标识指标名称的预留标签。

如上,我们丢掉指定job_name 中的

参考上面的配置,我们可以对指标(metric) 进行添加,删除,重命名等操作。

 

二、修改指标(metric) 中的标签(label)


如果我们使用 prometheus 监控 Kubernetes 运行状态;应该会遇到,在一个 query 中结合一个以上的job_name(metric_source)的情况。
不同的 job_name  metric  label 命名可能不相同。比如:pod的名称可以使用“pod”或者“pod_name” 这两个 label 记录。如果相同含义的label,名称却不相同;对query的编写就很困难了。至少我没有在PromQL 中找到类似 SQL 语句中的 as 的功能的关键词和方法
这样的话,正确的解决思路应该是在 Prometheus 拉取数据后,保存数据前;将 label 的名称进行重写;保证相同含义的label 有相同的名称。

metric_relabel_configs:
  - source_labels: [pod]
    separator: ;
    regex: (.+)
    target_label: pod_name
    replacement: $1
    action: replace
  - source_labels: [container]
    separator: ;
    regex: (.+)
    target_label: container_name
    replacement: $1
    action: replace

如上,将指定 job_name 中,所有的 metrics 中含有名为“pod”和“container”名称的 label 分别拷贝到名为“pod_name”,“container_name”的label中。
注意:如果metric 的 label的名称包含了“pod”和“container”关键词,但是不等于;则不会处理此label。

 

三、删除标签


删除标签通常用于隐藏敏感信息或者简化时间序列。

  metric_relabel_configs:
  - regex: 'kernelVersion'
    action: labeldrop

为了删除标签,我们指定了一个正则表达式,然后指定删除标签的操作labeldrop。
这将删除与正在表达式匹配的所有标签。

1、指数名称:北京大学数字普惠金融指数 2、课题组:本指数北京大学数字金融研究中心蚂蚁科技集团研究院组成的联合课题组负责编制,课题组顾问包括北京大学数字金融研究中心主任黄益平,蚂蚁集团研究院院长李振华。第一期指数2011-2015)课题组成员主要包括:郭峰、孔涛、王靖一、张勋、程志云、阮方圆、孙涛、王芳。第二期到第六期指数(2016-2023)课题组成员主要包括:郭峰、王靖一、程志云、李勇国、王芳。课题组也获得了北京大学蚂蚁集团多位同事的技术支持。 3、指数属性:这套指数包括数字普惠金融指数,以及数字金融覆盖广度数字金融使用深度以及普惠金融数字化程度;此外使用深度指数中还包含支付、信贷、保险、信用、投资、货币基金等业务分类指数;但由于监管公司数据安全审核等方面的原因,2019-2023的信用货币基金分指数,没有对外公布。 4、指数范围:中国内地31个省(直辖市、自治区,简称“省”)、337个地级以上城市(地区、自治州、盟等,简称“城市”),以及约2800个县(县级市、旗、市辖区等,简称“县域”);部分地区数据存在缺失;港澳台地区数据暂未包括。 5、时间跨度:省级城市级指数时间跨度为2011-2023,县域指数时间跨度为2014-2023。 6、地区代码说明:在2011-2023期间,中国部分地区进行了“撤地设市”“县(市)改区”等改革,调整了地区名称行政区划代码,但并不影响本指数统计;本表中城市代码同时保留了20142018两个版本,县域名称行政区划代码则以2014底的代码为准,以方便使用者合并其他经济社会数据进行分析。 7、引用说明:欢迎各界人士使用指数,如有使用本数据,请注明所用数据为“北京大学数字普惠金融指数”;同时烦请按照以下文献引用方式引用我们的成果:郭峰、王靖一、王芳、孔涛、张勋、程志云,《测度中国数字普惠金融发展: 指数编制与空间特征》,《经济学季刊》,2020第19卷第4期,第1401-1418页。 8、指数包括: index_aggregate(数字金融发展总指数), coverage_breadth(数字金融覆盖广度指数,二级维度3-1), usage_depth(数字金融使用深度指数,二级维度3-2), payment(电子支付指数),insurance(网络保险指数), monetary_fund,investment(网络投资指数), credit(网络信贷指数), credit_investigation, digitization_level(普惠金融数字化程度指数,二级维度3-3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值