差分数组概述



差分数组

在网上讲差分数组的博文很少,也很难找到。一度以为差分数组是传播于小众的神犇技巧所以一直放着没有去研习。今天做了 bzoj1635后发现各路神犇都用差分数组,本蒟却傻傻写了线段树。。。。。

对于序列a{},取a[i]-a[i-1]为其差分数组b[i]的值,可以发现,a[i]=∑bj(1≤j≤i)
如 对于序列 a、b、c、d 其差分数组为 a、 b-a、 c-b、 d-c
(a-0)
有a=a,b=a+(b-a),c=a+(b-a)+(c-b),d=a+(b-a)+(c-b)+(d-c)
那么,如果我们进行区间加减操作,且修改的区间连续不相交,那么,若将(x,y)区间整体加val,我们就可以对差分数组的b[x]加val,b[y+1]减val。此时差分数组所对应的原序列即为(x,y)整体加val后的区间。
如此而已,推一推就明白了。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值