遥感影像-语义分割数据集:2021年昇腾杯复赛数据集详细介绍及训练样本处理流程

原始数据集详情

简介:细粒度语义分割赛道依据现有的遥感地物分类要求, 结合现有的地物分类实际需求,参照地理国情监测、 “三调”等既有地物分类标准,依据遥感地物“所见即所得”原则, 设计地物要素分类体系,共涉及二级子类(47类),数据为0.8米-2米分辨率的遥感图像。

KeyValue
卫星类型GaoFen-1、ZiYuan-3
覆盖区域未知
场景未知
分辨率0.8m-2m
数量35000张
单张尺寸512*512
原始影像位深8位
标签图片位深8位
原始影像通道数四通道
标签图片通道数单通道

标签类别对照表

像素值类别名(中文)像素值类别名(中文)
0背景24公路
1旱地25铁路
2果园26硬化地表
3茶园27水工设施
4桑园28城墙
5橡胶园29温室、大棚
6苗圃30固化池
7花圃31工业设施
8其他经济苗木32沙障
9乔木林33其他构筑物
10灌木林34露天采掘场
11乔灌混合林35堆放物
12竹林36建筑工地
13疏林37其他人工堆掘地
14绿化林地38盐碱地表
15人工幼林39泥土地表
16稀疏灌草丛40沙质地表
17天然草地41砾石地表
18人工草地42岩石地表
19多层及以上房屋建筑区43河渠
20低矮房屋建筑区44水面
21废弃房屋建筑区45冰川与常年积雪
22多层及以上独立房屋建筑46水田
23低矮独立房屋建筑

数据处理部分

大家是否有这样的困惑?真值标签图片的像素值太小,比如1、2、3······,由于像素值太小,导致看上去标签图片全为黑色,无法看出真值标签与影像图片的像素位置是否对应?如果真值标签的像素值间隔太大,又无法直接作为训练样本。

其实有办法可以解决这个问题,那就是在像素值为1、2、3等的图片上添加一个彩色表,添加的彩色表不会改变图片的像素值,但是可以由彩色的视觉效果展示,如下图所示:
在这里插入图片描述

下面对原始影像及标签进行模型训练前的数据预处理,根据这套数据集的原始信息,原作者整理的已基本接近训练条件,现在需要做的是根据自己训练模型的图片尺寸大小批量裁剪原始影像和标签为所需要的尺寸,比如512*512,另外如果需要检查裁剪后的数据是否一一对应,最好给标签数据添加颜色表,这样就可以轻易看出影像和真值标签是否一致。

下面就是使用代码对原始影像及原始标签进行批量裁剪为512*512大小,并给真值标签添加颜色表,效果图如下所示:

在这里插入图片描述

最后可以直接用于训练的数据集结构如下所示


├── train
│   ├── images
│   │   ├── 2522_0_0.tif
│   │   ├── 2522_0_512.tif
│   │   └── ......
│   └── labels
│       ├── 2522_0_0.tif
│       ├── 2522_0_512.tif
│       └── ......
└── val
    ├── images
    │   ├── 2522_512_512.tif
    │   ├── 2523_0_0.tif
    │   └── ......
    └── labels
        ├── 2522_512_512.tif
        ├── 2523_0_0.tif
        └── ......

获取相关数据集或咨询交流见 博主首页 个人简介
1、官网原始数据集;
2、中间处理好的大图数据集;
3、裁剪后可直接训练的小图数据集;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值