# poj2777 Count Color

Description

Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board:

1. "C A B C" Color the board from segment A to segment B with color C.
2. "P A B" Output the number of different colors painted between segment A and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

with tree[p] do
begin
if (l=b) and (r=e) then
begin
color:=1 shl (c-1);
cover:=true;
exit;
end;
if cover then
begin
cover:=false;
tree[p*2].cover:=true;
tree[p*2].color:=color;
tree[p*2+1].cover:=true;
tree[p*2+1].color:=color;
end;
m:=(l+r) div 2;
if e<=m then ins(p*2,b,e,c) else
if b>m then ins(p*2+1,b,e,c) else
begin
ins(p*2,b,m,c);
ins(p*2+1,m+1,e,c);
end;
color:=tree[p*2].color or tree[p*2+1].color;
end;

#### poj2777--Count Color(线段树，二进制转化)

2014-08-04 21:48:26

#### poj2777Count Color（线段树）

2015-12-20 17:52:09

#### poj2777 线段树+位+小总结

2013-02-18 00:21:57

#### poj2777(线段树)

2017-11-16 15:12:12

#### POJ2777线段树

2017-02-09 11:07:10

#### poj2777

2014-08-16 19:00:51

#### Count Color_poj2777_线段树+位运算

2016-05-29 11:52:42

#### poj 2777 Count Color 线段树

2013-10-01 00:03:56

#### poj2777 第一道真正意义上完全自己做出来的线段树

2016-07-29 15:16:24

#### [POJ2777] 统计颜色 - 线段树

2017-02-06 23:57:51