- 时间限制:1秒空间限制:32768K
- 算法知识视频讲解
题目描述
王强今天很开心,公司发给N元的年终奖。王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。王强想买的东西很多,为了不超出预算,他把每件物品规定了一个重要度,分为 5 等:用整数 1 ~ 5 表示,第 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 元的整数倍)。他希望在不超过 N 元(可以等于 N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j 件物品的价格为 v[j] ,重要度为 w[j] ,共选中了 k 件物品,编号依次为 j 1 , j 2 ,……, j k ,则所求的总和为:
v[j 1 ]*w[j 1 ]+v[j 2 ]*w[j 2 ]+ … +v[j k ]*w[j k ] 。(其中 * 为乘号)
请你帮助王强设计一个满足要求的购物单。
输入描述:
输入的第 1 行,为两个正整数,用一个空格隔开:N m
(其中 N ( <32000 )表示总钱数, m ( <60 )为希望购买物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000 )。
输入例子:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出例子:
2200
01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } 加以判断主附件
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int[] v = new int[n];
int[] q = new int[n];
int[] value = new int[n];
for (int i = 0; i < m; i++) {
v[i] = sc.nextInt();
value[i] = sc.nextInt() * v[i];
q[i] = sc.nextInt();
}
System.out.println(f(v, value, q, m, n));
}
public static int f(int[] price, int[] value, int[] q, int n, int m) {
int[][] dp = new int[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
//主件
if (q[i - 1] == 0) {
if (price[i - 1] <= j) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - price[i - 1]] + value[i - 1]);
}
}
//附件
else {
if (price[i - 1] + price[q[i - 1]] < j) { //判断时要加上主件
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - price[i - 1]] + value[i - 1]);
}
}
}
}
return dp[n][m];
}
}