-
题目描述
- 卡门――农夫约翰极其珍视的一条Holsteins奶牛――已经落了到“垃圾井”中。“垃圾井”是农夫们扔垃圾的地方,它的深度为D(2<=D<=100)英尺。卡门想把垃圾堆起来,等到堆得与井同样高时,她就能逃出井外了。另外,卡门可以通过吃一些垃圾来维持自己的生命。每个垃圾都可以用来吃或堆放,并且堆放垃圾不用花费卡门的时间。假设卡门预先知道了每个垃圾扔下的时间t(0< t<=1000),以及每个垃圾堆放的高度h(1<=h<=25)和吃进该垃圾能维持生命的时间f(1<=f<=30),要求出卡门最早能逃出井外的时间,假设卡门当前体内有足够持续10小时的能量,如果卡门10小时内没有进食,卡门就将饿死。 输入
- 第一行为2个整数,D 和 G (1 <= G <= 100),G为被投入井的垃圾的数量。第二到第G+1行每行包括3个整数:T (0 < T <= 1000),表示垃圾被投进井中的时间;F (1 <= F <= 30),表示该垃圾能维持卡门生命的时间;和 H (1 <= H <= 25),该垃圾能垫高的高度。 输出
- 如果卡门可以爬出陷阱,输出一个整表示最早什么时候可以爬出;否则输出卡门最长可以存活多长时间。 样例输入
-
20 4 5 4 9 9 3 2 12 6 10 13 1 1
样例输出
-
13
题目思路
-
设dp[j]为高度为j时,卡门的最长寿命(时间)。
状态转移方程:
不吃垃圾:dp[j+h] = max(dp[j];
吃垃圾:dp[j+h]); dp[j] += t;
-
题目代码
#include <cstdio>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#define LL long long
#define maxn 105
using namespace std;
struct Node{
int t,f,h;
}jun[105];
bool cmp(Node n1, Node n2){
return n1.t < n2.t;
}
int d,g;
int t[maxn], f[maxn], h[maxn], dp[130];
int main(){
scanf("%d%d",&d,&g);
memset(dp,0,sizeof(dp));
dp[0] = 10;
for(int i = 1; i <= g; i++){
scanf("%d%d%d",&jun[i].t,&jun[i].f,&jun[i].h);
}
sort(jun+1,jun+g+1,cmp);
for(int i = 1; i <= g; i++){
int t = jun[i].t;
int f = jun[i].f;
int h = jun[i].h;
for(int j = d; j >= 0; j--){
// 如果能活到扔垃圾的时候
if(dp[j] >= t){
// 堆放垃圾
dp[j+h] = max(dp[j], dp[j+h]);
// 吃掉垃圾
dp[j] += f;
// 如果堆放垃圾的高度已经到达出口
if((j+h) >= d){
printf("%d\n",t);
exit(0);
}
}
}
}
int ans = -1;
for(int i = 0; i <= d; i++){
ans = max(ans,dp[i]);
}
printf("%d\n",ans);
return 0;
}