97. Interleaving String



Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

Example 1:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true

Example 2:

Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false

转自 :   https://www.cnblogs.com/grandyang/p/4298664.html

这道求交织相错的字符串和之前那道 Word Break 拆分词句 的题很类似,就想我之前说的只要是遇到字符串的子序列或是匹配问题直接就上动态规划Dynamic Programming,其他的都不要考虑,什么递归呀的都是浮云,千辛万苦的写了递归结果拿到OJ上妥妥Time Limit Exceeded,能把人气昏了,所以还是直接就考虑DP解法省事些。一般来说字符串匹配问题都是更新一个二维dp数组,核心就在于找出递推公式。那么我们还是从题目中给的例子出发吧,手动写出二维数组dp如下:

 

复制代码
  Ø d b b c a
Ø T F F F F F
a T F F F F F
a T T T T T F
b F T T F T F
c F F T T T T
c F F F T F T
复制代码

 

首先,这道题的大前提是字符串s1和s2的长度和必须等于s3的长度,如果不等于,肯定返回false。那么当s1和s2是空串的时候,s3必然是空串,则返回true。所以直接给dp[0][0]赋值true,然后若s1和s2其中的一个为空串的话,那么另一个肯定和s3的长度相等,则按位比较,若相同且上一个位置为True,赋True,其余情况都赋False,这样的二维数组dp的边缘就初始化好了。下面只需要找出递推公式来更新整个数组即可,我们发现,在任意非边缘位置dp[i][j]时,它的左边或上边有可能为True或是False,两边都可以更新过来,只要有一条路通着,那么这个点就可以为True。那么我们得分别来看,如果左边的为True,那么我们去除当前对应的s2中的字符串s2[j - 1] 和 s3中对应的位置的字符相比(计算对应位置时还要考虑已匹配的s1中的字符),为s3[j - 1 + i], 如果相等,则赋True,反之赋False。 而上边为True的情况也类似,所以可以求出递推公式为:

dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i - 1 + j]) || (dp[i][j - 1] && s2[j - 1] == s3[j - 1 + i]);

其中dp[i][j] 表示的是 s2 的前 i 个字符和 s1 的前 j 个字符是否匹配 s3 的前 i+j 个字符,根据以上分析,可写出代码如下:

 

class Solution {
public:
	bool isInterleave(string s1, string s2, string s3) {
		if (s1.size() + s2.size() != s3.size())  return false; 
		int n1 = s1.size();
		int n2 = s2.size(); 
		vector <vector<bool>>  dp(n1 + 1, vector<bool>(n2 + 1, false));   
		dp[0][0] = true; 
		for (int i = 1; i <= n1; ++i)
		{
			dp[i][0] = dp[i - 1][0] && (s1[i - 1] == s3[i - 1]);
		}

		for (int j = 1; j <= n2; ++j)
		{
			dp[0][j] = dp[0][ j - 1] && (s2[j - 1] == s3[j - 1]); 
		}

		for (int i = 1; i <= n1; i++)
		{
			for (int j = 1; j <= n2; j++)
			{
				dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[j + i - 1]) ||
					(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
			}
		}
		return dp[n1][n2];

	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值