把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
分析:
1个骰子6种情况,n个骰子,6n - n + 1 种情况,以两个骰子掷7为例,如果两个骰子之和为7,则第一个骰子掷出的可能的情况为(1,1)(1,2)(1,3),(1,4),(1,5),(1,6)这样第二个骰子掷出为(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)如果两个骰子之和为8则有可能的情况为(1,2)(1,3),(1,4),(1,5),(1,6),同样的第二个骰子掷出为(2,6)(2,5)(2,4)(2,3)(2,2),从这里可以看出两个骰子掷出7点或8点,都需要先去统计(1,2)(1,3),(1,4),(1,5),(1,6)这几种情况,存在重复计算的部分,可以用到dp来记录
同样的经过上面的分析,也可以发现n个骰子掷出点数之和看最后一个骰子掷出了多少点,而最后一个骰子又可以参照n-1个骰子掷出了几点,进而可以得到递推式
dp[第n个骰子][n个骰子掷出的点数之和] = dp[第n - 1个骰子][n个骰子总点数之和 - 第n个骰子掷出的点数]
ps:当涉及到的循环比较多,数组的下标问题处理比较麻烦的时候可以把数组行列都多开辟一行一列,然后用下标1对1去写程序
class Solution {
public:
vector<double> dicesProbability(int n) {
// n个骰子,6n种情况
vector<vector<int>> dp(n + 1, vector<int>(6 * n + 1));
for(int i = 1; i <= 6; i++) dp[1][i] = 1;
// 遍历第几个骰子
for(int i = 2; i <= n; i++){
// 遍历当前骰子有多少种需要考虑的点数的情况
for(int j = i; j <= 6 * i; j++){
// 对当前n个骰子的当前点数出现的次数,去找n - 1个骰子减去当前骰子6个情况的次数
for(int k = 1; k <= 6; k++){
if(j - k < 0) break;
dp[i][j] += dp[i - 1][j - k];
}
}
}
int totalNum = pow(6, n);
vector<double> res;
for(int i = n; i <= 6 * n; i++)
res.push_back(dp[n][i] * 1.0 / totalNum);
return res;
}
};