将行列式 λ-1 2 0 2 λ-2 2 0 2 λ-3 化成 (λ+1)(λ-2)...

本文介绍了两种方法来简化行列式λ-1202λ-2202λ-3,包括通过初等变换提取因式(λ+1),以及直接展开计算。详细展示了如何一步步将表达式转化为(λ+1)(λ-2)(λ-5)的形式,适合行列式计算的学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将行列式 λ-1 2 0 2 λ-2 2 0 2 λ-3 化成 (λ+1)(λ-2)(λ-5)

第一种方法: 对行列式初等变换

首先提取 (λ+1), 之后正常变换化为阶梯矩阵
将行列式 λ-1 2 0 2 λ-2 2 0 2 λ-3 化成 (λ+1)(λ-2)...

第二种方法: 直接展开计算

将行列式 λ-1 2 0 2 λ-2 2 0 2 λ-3 化成 (λ+1)(λ-2)...

打赏

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕青山博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值