题目:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
分析:
Climbing Stairs 爬楼梯问题是递归中非常基础的一道题。
处理递归的问题,有非常重要和程序化的三个步骤:
1). 找到 base case
这道题通过简单的枚举,就可以找到 base case:当楼层为1的时候,有一种方法;当楼层为2的时候,有两种方法。
2). 找到 recursion rule
找到 recursion rule 的方法有两种。
第一种方法仍然是通过简单的枚举总结出规律,例如,当 n = 3 时,有3种方法,等于 f (n=1) + f (n=2);当 n = 4 时,有5种方法,等于 f (n=2) + f (n=3)。
第二种方法是通过逻辑分析,抽象出 recursion rule 的公式。因为一次只能走一步或者两步,所以 走n步的方法 = 走n-1步的方法 + 走 n-2 步的方法,抽象公式为 f (n) = f (n-1) + f (n-2)。
我个人更倾向于第二种方法,应该培养逻辑思维抽象出 recursion rule 的方法,因为很多复杂的 recursion rule 并不能通过简单的枚举和加减法找出规律。
代码:
public class Solution {
public int climbStairs(int n) {
if (n == 1)
return 1;
if (n == 2)
return 2;
return climbStairs(n-1) + climbStairs(n-2);
}
}
Ps:
值得一提的是,LeetCode70 用递归的方法并不能通过,会显示 Time Limit Exceed,因为OJ想要的解法是通过动态规划。