有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。?
因此又称孙子定理:
1.对于上述的问题我们知道,可以直接暴力,判断求解,那么有没有更加优化的方法呢,使得更少的步骤最快的时间求出解呢:?
这个整数对3, 和7同余,那么首先求出3,7的最小公倍数+那个余数2 = 23, 然后判断23是否对5余3,如果不是,循环加23,加到这个数变成对5余3;
2.一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?
题目可以看成,除3余2,除5余3,除7余4。没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加7,直到所得的数除5余3。得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”
4+7=11
11+7=18
18+35=53
(百度百科)