如何给tensor变量赋值

本文介绍了使用TensorFlow进行变量赋值的三种方法,包括直接初始化、使用assign方法以及通过会话加载值,展示了如何在TensorFlow环境中灵活操作变量。
部署运行你感兴趣的模型镜像

以下有三种方式可以给tensor变量赋值,代码如下:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
import numpy as np
import os 
import sys
import tensorflow as tf

workpath=os.path.dirname(sys.argv[0])
os.chdir(workpath)          #指定py文件执行路径为当前工作路径

def main():
    
   x = tf.Variable(1)
   x2=tf.assign(x,2)
   x3=x.assign(3)
   with tf.Session() as sess:
      print(sess.run(x2))
      print(sess.run(x3))
      x.load(4, sess)
      x4=x
      print(sess.run(x4))

if __name__=="__main__":
    main()

执行结果如图:
在这里插入图片描述

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值