题目描述
给定一课二叉树,找到其中指定两个点的最近公共祖先 (LCA)。
根据Wikipedia中LCA的定义 :“最近公共祖先定义为两个结点 p 和 q 之间,树中最低的结点同时拥有 p 和 q 作为后代(这里允许一个结点的后代为它本身)。
注意
树中每个结点的权值都是唯一的。
p 和 q是两个不同的结点,且其值必定在二叉树中出现。
样例
Given the following binary search tree: root = [3,5,1,6,2,0,8,null,null,7,4]
_______3______
/ \
___5__ ___1__
/ \ /
6 _2 0 8
/
7 4
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
解释: 结点 5 和 1 的最近公共祖先是 3。
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: 结点 5 和 4 的最近公共祖先是 5, 因为根据后代结点的定义,一个结点的后代允许为它本身。
思路
递归做法,
root 的值等于 p 的值或者 q 的值
这种时候直接返回 root 这个 node 就好了。
root 的左边、右边都返回了一个node
这种时候也是直接返回 root 就好了。
root 的右边或者左边返回了一个node, 另一边的返回值是空的。
这种时候返回右边或者左边那个不是空的的node。
如果左边、右边的返回值都是空的
这就只好返回空的值了。
(这个感觉应该放在最前面)如果连 root 都是空的话
也要返回空指针,这个应该是这一条路走到底的情况了。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(!root||root==q||root==p) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left && right) return root;
else if(left) return left;
else if(right) return right;
return nullptr;
}
};