多重集组合数【dp】

原题链接

题面

在这里插入图片描述

思路

首先用过题意可以很容易想到一个三重循环的解决方法:

  • 代码是:

    #include<bits/stdc++.h> 
    using namespace std;
    const int N = 1e3 + 10;
    int a[N], f[N][N];
    int main()
    {
    	int n, m, M;
    	cin >> n >> m >> M;
    	for (int i = 1; i <= n; i ++ ) cin >> a[i];
    	f[0][0] = 1;
    	for (int i = 1; i <= n; i ++ )
    	{
    		for (int j = 0; j <= m; j ++ )
    		{
    			for (int k = 0; k <= min(j, a[i]); k ++ )
    			{
    				f[i][j] = f[i][j] + f[i - 1][j - k];
    				f[i][j] %= M;
    			}
    		}
    	}
    	cout << f[n][m] << endl;
    	return 0;
    }
    

    意思是对于第i种物品,选j件时的方案数,可以由不选这件物品时 少用 k k k 件时的方案数得来

  • 定义 f i j f_{ij} fij 是前 i i i 种物品选 j j j 个的方案数

  • j = = 0 j == 0 j==0 f i j = f ( i − 1 ) j f_{ij} = f_{(i - 1)j} fij=f(i1)j

  • 1 < = j < = k 1 <= j <= k 1<=j<=k

    • f i j = f ( i − 1 ) ( j − 0 ) + f ( i − 1 ) ( j − 1 ) + … + f ( i − 1 ) ( j − j ) f_{ij} = f{(i - 1)(j - 0)} + f{(i - 1)(j - 1)} + … + f{(i - 1)(j - j)} fij=f(i1)(j0)+f(i1)(j1)++f(i1)(jj)

    • f i ( j − 1 ) = f ( i − 1 ) ( j − 1 ) + f ( i − 1 ) ( j − 2 ) + … + f ( i − 1 ) ( j − j ) f_{i(j - 1)} = f{(i - 1)(j - 1)} + f{(i - 1)(j - 2)} + … + f{(i - 1)(j - j)} fi(j1)=f(i1)(j1)+f(i1)(j2)++f(i1)(jj)

    • 移项得

      f i j = f ( i − 1 ) j + f i ( j − 1 ) f_{ij} = f_{(i - 1)j} + f_{i(j - 1)} fij=f(i1)j+fi(j1)

  • k < j k < j k<j :(这里一位是多减了一个,但又因为是大于,所以顶多减成0,不会越界)

    • f i j = f ( i − 1 ) ( j − 0 ) + f ( i − 1 ) ( j − 1 ) + … + f ( i − 1 ) ( j − k ) f_{ij} = f_{(i - 1)(j - 0)} + f_{(i - 1)(j - 1)} + … + f_{(i - 1)(j - k)} fij=f(i1)(j0)+f(i1)(j1)++f(i1)(jk)

    • f i ( j − 1 ) = f ( i − 1 ) ( j − 1 ) + f ( i − 1 ) ( j − 2 ) + … + f ( i − 1 ) ( j − k ) + f ( i − 1 ) ( j − k − 1 ) f_{i(j - 1)} = f_{(i - 1)(j - 1)} + f_{(i - 1)(j - 2)} + … + f_{(i - 1)(j - k)} + f_{(i - 1)(j - k - 1)} fi(j1)=f(i1)(j1)+f(i1)(j2)++f(i1)(jk)+f(i1)(jk1)

    • 移项得

      f i j = f ( i − 1 ) ( j ) + f ( i − 1 ) ( j − 2 ) − f ( i − 1 ) ( j − k − 1 ) + f i ( j − 1 ) f_{ij} = f_{(i - 1)(j)} + f_{(i - 1)(j - 2)} - f_{(i - 1)(j - k - 1)} + f_{i(j - 1)} fij=f(i1)(j)+f(i1)(j2)f(i1)(jk1)+fi(j1)

  • 最终得到两重循环的代码

    #include<bits/stdc++.h> 
    using namespace std;
    const int N = 1e3 + 10;
    int a[N], f[N][N];
    int main()
    {
    	int n, m, M;
    	cin >> n >> m >> M;
    	for (int i = 1; i <= n; i ++ ) cin >> a[i];
    	f[0][0] = 1;
    	for (int i = 1; i <= n; i ++ )
    	{
    		for (int j = 0; j <= m; j ++ )
    		{
    			if (j == 0) f[i][j] += f[i - 1][j];
    			else if (1 <= j && j <= a[i]) f[i][j] += (f[i - 1][j] + f[i][j - 1]);
    			else if (j > a[i]) f[i][j] += (f[i - 1][j] + f[i][j - 1] - f[i - 1][j - 1 - a[i]]);
    			f[i][j] = (f[i][j] + M) % M;
    		}
    	}
    	cout << f[n][m] << endl;
    	return 0;
    }
    
  • 注意点,在运算中包含减法,取模时,需要先加上余数再取模,不然有可能变成负数

  • 参考

  • 在这里插入图片描述

总结

当时写的时候应该是懂了没错,可是现在补题解的时候却又觉得有些一知半解,需要多多复习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值