自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 资源 (2)
  • 收藏
  • 关注

转载 WOE/IV详解

点击打开链接https://blog.csdn.net/kevin7658/article/details/50780391对于计算WOE而言,首先进行分段:最优分段、等距分段。https://blog.csdn.net/lll1528238733/article/details/76600598里提到”连续变量最优分段算法是基于条件推理树(conditional inference trees,...

2018-05-04 09:18:21 912

原创 R桑基图

哈哈哈哈搞定桑基图了!

2017-08-21 14:14:46 8923

原创 序列关联规则报错。。。

> result<-cspade(data.tran,parameter=list(support=0,maxlen=2))Error in makebin(data, file) : 'sid' invalid (order)原因:Your error comes from the source file makebinit's because your sequenc

2017-08-10 17:07:31 816 1

转载 Python基本操作

蜜汁懒……http://www.cnblogs.com/vamei/p/3174796.html点击打开链接

2017-04-22 16:47:50 246

转载 正则表达式

Python 正则表达式详细讲解:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

2017-04-19 19:26:26 171

转载 sklearn中的模型评估

http://scikit-learn.org/stable/modules/model_evaluation.htmlaccuracy_score(预测准确率)The accuracy_score function computes the accuracy, either the fraction (default) or the count (normalize=Fa

2017-04-19 19:25:39 483

转载 正则表达式

Python 正则表达式详细讲解: http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

2016-09-30 20:05:13 235

原创 用字典创建一个平台的用户信息(包含用户名和密码)管理系统

用字典创建一个平台的用户信息(包含用户名和密码)管理系统,新用户可以用与现有系统帐号不冲突的用户名创建帐号,已存在的老用户则可以用用户名和密码登陆重返系统。你完成了吗?建议程序框架为:def newusers():    enter a name    if the name is used in the system:        enter again

2016-05-17 21:47:43 7207

原创 Python数据处理相关小例编程

有5名某界大佬xiaoyun、xiaohong、xiaoteng、xiaoyi和xiaoyang,其QQ号分别是88888、5555555、11111、1234321和1212121,用字典将这些数据组织起来。编程实现以下两个功能:(1)用户输入某一个大佬的姓名后可以输出其QQ号,如果输入的姓名不在字典中则返回提示信息并允许再次输入;(2)寻找所有有QQ靓号(5位数或小于5位数)的

2016-05-16 21:29:20 4928

原创 统计字符串中的字符个数

1统计字符串中的字符个数。(4分)题目内容:定义函数countchar()统计字符串中所有出现的字母的个数(允许输入大写字符,并且计数时不区分大小写)。输入格式:字符串输出格式:列表输入样例:Hello, World!输出样例:[0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0

2016-05-09 21:50:11 1162

原创 数据获取编程题

抓取百度贴吧“http://tieba.baidu.com/p/1000000000”至“http://tieba.baidu.com/p/1000000009”这10个页面并以1000000000.html~1000000009.html这样的文件名保存到本地硬盘上(提示:文件写入使用wb模式)。>>> import urllib.request>>> for i in range(10)

2016-05-08 22:48:34 339

原创 Python输出出现多于空格的问题

在我的实践中,有一种情况叫输出中出现多余的空格:比如我想输出hello,xxx!会输出成hello,xxx  !eg:>>> L = ['bart','lisa','adam']>>> for i in L: print('hello,',i,'!') hello, bart ! #出现多余空格hello, lisa !hello, adam !改进:1、使用

2016-05-07 22:51:38 7957

原创 while死循环

作为初学者,已经陷入while的几次死循环了。比如:求100以内所有奇数之和。用while来实现,我出现了以下死循环:>>> sum = 0>>> for i in range(1,101): while i%2 != 0: sum += i #死了……因为while条件永远满足 然后我灵机一动:>>> sum = 0>>> for i in r

2016-05-07 22:24:12 2886

原创 “本地数据获取”的综合编程迷你项目

(1) 创建一个文件Blowing in the wind.txt,其内容是:    #问题非原创How many roads must a man walk downBefore they call him a manHow many seas must a white dove sailBefore she sleeps in the sandHow many times

2016-05-06 11:13:39 951

转载 前5个默尼森数

>>> from math import sqrt>>> def isprime(x): if x == 1: return False k = int(sqrt(x)) for j in range(2,k+1): if x%j == 0: return False return True>>> def moni(): count=0 list=[] p = 2

2016-05-01 21:39:17 2210

原创 循环中的推进

请输出1~100之间的素数(自定义函数的方法):一、>>> def isprime(x): if x == 1: return False k = int(sqrt(x)) for j in range(2,k+1): if x%j == 0: return False else: return True >>> for i in range(1,10

2016-04-28 21:38:13 319

原创 Python报错

一、关于缩进问题报错>>> import treesTraceback (most recent call last): File "", line 1, in import trees File "D:\Python\trees.py", line 9 labelCounts[currentLabel] = 0

2016-04-23 10:34:07 1151

原创 Python3与2区别(学习笔记)

一、Hello world! 在2中:>>>print 'hello,world!'hello,world!在3中:>>> print "hello, world"SyntaxError: Missing parentheses in call to 'print'>>> print('hello,world!')hello,world!

2016-04-16 16:17:39 503

XGBOOST算法原理及应用介绍

比较偏重于理论阐述的工具书,原理解释、数学推导比较详细,可参考论文一起看。

2018-10-29

陈天奇xgb论文《XGBoost: A Scalable Tree Boosting System》

陈天奇xgb论文。Tree boosting is a highly eective and widely used machine learning method. In this paper, we describe a scalable endto- end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.

2018-09-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除