面试题9:斐波那契数列
题目:写一个函数,输入n,求斐波那契数列的第n项
- 方法一:使用递归。
#include<iostream>
#include<stdlib.h>
using namespace std;
//方法一
long long Fib(unsigned int n)
{
if(n<=0)
return n;
if(n==1)
return n;
return Fib(n-1)+Fib(n-2);
}
int main()
{
int f=Fib(10);
cout<<f<<endl;
system("pause");
return 0;
}
递归
方法存在明显的不足,该方法的时间复杂度是n的指数级别,随着n的增大,运算时间不可想象,比如说f(50)就要很久。时间复杂度之所以这么大,是因此计算过程中存在着重复计算。以f(10)为例,f(10)=f(9)+f(8),f(9)=f(8)+f(7)。其中的f(8)就是重复计算的。
方法2:开辟一个长度为(n+1)的数组
前面我们计算斐波那契数列是从后往前计算的,就是计算f(n)=f(n-1)+f(n-2),然后再递归计算f(n-1),又是从后往前计算,就是因为这样的从后往前计算,所以才会有很多的重复计算。那么我们可以逆转思路,考虑从前往后计算。比如我们要计算f(4),那么我们就计算f(0)、f(1)、f(2)、f(3),将这些计算出来的值保存在一个数组arr[n+1]上,这样计算斐波那契数列就相当于是一个填表的过程。时间复杂度大大降低。代码实例如下:
int Fib(int n)
{
if(n<=0)
return n;
else if(n==1)
return n;
else
{
int *arr=new int[n+1];
arr[0]=0;
arr[1]=1;
for(int i=2;i<=n;i++)
{
arr[i]=arr[i-1]+arr[i-2];
}
int ret=arr[n];
delete[] arr;
return ret;
}
}
int main()
{
int f=Fib(10);
cout<<f<<endl;
system("pause");
return 0;
}
方法3:优化方法2,空间复杂度为O(1),时间复杂度为O(n)
int Fib(int n)
{
if(n<=0)
return 0;
else if(n==1)
return 1;
else
{
int num1=0;
int num2=1;
int fn=0;
for(int i=2;i<=n;i++)
{
fn=num1+num2;
num1=num2;
num2=fn;
}
return fn;
}
}
int main()
{
int f=Fib(10);
cout<<f<<endl;
system("pause");
return 0;
}