non-maximum suppression

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Supp...

2018-11-19 15:45:51

阅读数 17

评论数 0

感知机-理论心得体会

感知机1957年由Rosenblatt提出,是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,即+1和-1。感知机对应于特征空间中将实例划分为正负两类的分离超平面。感知机学习的目的是找出将训练数据正确划分的线性分离超平面,具体的方法是使用梯度下降法尝试不断减少损失函数。---感知机...

2018-07-11 22:20:56

阅读数 56

评论数 0

机器学习-开端

学机器学习也有一段时间了,但是纸上得来终觉浅,书看了一遍又一遍,但是过一段时间又回到原点。所以我觉得我总得留下来点什么,以前总觉得自己不算笨,很少做笔记,以前看来我这样做的效果不错,考试总能让自己满意,但是现在发现学习得快,忘得也快。人生有时候需要将就,有时候就不能将就。我还年轻,我觉得还经得起折...

2018-07-11 21:37:15

阅读数 30

评论数 0

Fast R-CNN

Fast R-CNN是在R-CNN和SPP-Net的基础上改良而来的。R-CNN的缺点a,步骤繁琐首先需要对输入的数据进行wrap或者crop,从而将数据变为fix的输入(224*224)然后对于输入的每一个proposal,通过5个卷积网络和2个全连接网络进行训练而且还需要使用SVM对数据进行f...

2018-07-09 17:03:07

阅读数 24

评论数 0

SPP笔记

SPP全称为Spatial Pyramid Pooling,即空间金字塔池化,听名字就知道是对RCNN的一种变形,目的是为了解决RCNN输入图像的大小固定(224*224)的问题,因为真实照片中的物体的大小并不都一样,对图像就行wrap或者切割,不可避免会造成图像的失真,从而增大运算结果的误差。S...

2018-07-09 15:14:24

阅读数 327

评论数 1

R-CNN理解

RCNN(Regions with CNN features)是使用CNN方法解决图片中目标检测问题,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。        算法可以分为四步:        1)候选区域选择        Region Pr...

2018-07-09 09:40:51

阅读数 95

评论数 0

区块链

任何人都能提交记录每个人都是监督者信息存储在个人计算机中分布式和 去中心化 避免被操作和破坏按照时间先后顺序存放别人提交的记录 密码学

2018-06-22 18:25:49

阅读数 65

评论数 0

基于CUDA的并行计算技术及应用

CUDA是NVIDIA发布的GPU上的并行计算平台和模型, 2006年第一代CUDA发布,截至2018年最新的是9代CUDA1、GPU并行计算的发展历程早期GPGPU(汇编)--中期GPGPU--目前的GPGPU(CUDA)GPU和CPU相比的优势在于,架构,显存,共享存储,SM(流式多处理器)2...

2018-06-22 18:25:06

阅读数 185

评论数 0

开发测试团队有感

1、开发团队与测试团队要分开,测试团队不能受制于开发团队,独立性在测试工作中特别重要。2、开发人员与测试人员的每次交流需要进行记录3、测试人员要热衷于找问题、挑毛病,有质量要求。...

2018-06-22 14:50:40

阅读数 65

评论数 0

python+pandas读取csv文件

import pandas as pddata_train = pd.read_csv("D:/deep/Titanic/train.csv")

2018-06-08 07:23:47

阅读数 419

评论数 0

numpy.dot用法

首先看定义:Dot product of two arrays. Specifically,If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).If both a ...

2018-06-01 11:50:48

阅读数 187

评论数 0

快鹿--常用目录管理--提高工作效率

在使用电脑的过程中,每个人都有几个常用的目录像我目录特别深,每次找自己的文件或者目录时,就觉得特别焦虑,所以在吃饭的时候,写了一个管理常用目录的小公举---快鹿选中目录以后,双击Open即可打开相应的目录,没有什么技术难题,但是这几天用的很开心,,,...

2018-06-01 11:24:05

阅读数 38

评论数 0

python中调用numpy生成正太分布时,numpy.random.randn()与rand()的区别

进行深度学习时,常常需要使用一些正太分布数据,numpy就提供了很多方法,生成正太分布数据,减少了我们很多工作量 numpy.random.randn(x1,x2,x3.....)是从标准正态分布中返回一个或多个样本值。 numpy.random.rand(x1,x2,x3.....)的随机样本位...

2018-06-01 11:14:30

阅读数 707

评论数 0

python zip函数

1、语法     zip([iterable, ...])    参数: iterabl -- 一个或多个迭代器;    返回:元组2、示例    a = [1,2,3]    b = [4,5,6]    zipped = zip(a,b)    #压缩   Result:[(1, 4), (2...

2018-06-01 10:24:02

阅读数 23

评论数 0

使用VS2013发布ASP.NET Web项目

一、创建网站项目1.1、新建项目点击文件->新建->项目1.2、选择ASP.NET Web窗体应用程序填写项目名称,点击确定1.3、修改Default页面,添加测试数据二、发布网站2.1选择生成-发布myShop2.2自定义发布文件2.3配置文件名称2....

2018-05-31 15:10:36

阅读数 2284

评论数 0

线性回归过拟合解决办法

1、通过PCA算法丢弃一些对最终预测结果影响不大的特征2、保留所有特征,使用正则化技术,减少特征前面的参数θ的大小---修改损失函数,实例如岭回归以及Lasso回归...

2018-05-24 11:48:42

阅读数 571

评论数 0

Andrew Ng--∇AtrAB =BT

2018-05-24 11:10:04

阅读数 134

评论数 0

使用Advanced Installer 13.5对VS2013开发的网站打包成exe研究

1、选择打包的项目类型2、设置软件/服务名称和公司3、选择打包类型(MSI,EXE,CD,GPO,WebInstaller)4、选择安装包输出位置5、选择打包项目(选择任一ASP.NET项目)6、等待加载7、选择生成模式(默认选择Debug-AnyCPU)8、选择打包文件(后续可调整)9、选择需要...

2018-05-24 10:52:17

阅读数 313

评论数 0

首次使用gitHub时,对Git进行配置--并且上传第一个项目

一、配置ssh1.1、初始化ssh  a、输入命令行    git config --global user.name test(你的github用户名)    git config --global user.email 750220801@qq.com(你的github注册邮箱)  1.2、创...

2018-05-24 10:43:15

阅读数 154

评论数 0

dropout理解

大规模的神经网络有两个缺点:费时,容易过拟合dropout效果:每次从原始网络中找到一个更瘦的网络,对于一个有N个节点的神经网络,相当于有了2~n个新模型dropout迫使一个神经单元,和以概率随机挑选出来的其他神经单元一起工作,减弱各个神经单元间的关联度,增强了网络的泛化能力...

2018-05-24 09:38:53

阅读数 59

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭