并查集

本文详细介绍了并查集这一数据结构,包括其基本概念、两种主要实现方式QuickFind和QuickUnion,以及针对这两者的优化策略,如基于size的优化、基于rank的优化和路径压缩。通过这些优化,提高了查找和连接操作的效率,降低了树的高度,确保了并查集在处理大规模数据连接问题时的性能。
摘要由CSDN通过智能技术生成

并查集

概述

  • 并查集用来解决连接问题
  • 对于一组数据,主要支持两个操作:
    • union(p,q):将p和q连接起来
    • find(p):查p具体是在哪个组中
    • 以上两个操作用来回到isConnected(p,q):判断p、q是否相连

基本数据表示

Quick Find
  • 在这里插入图片描述

  • 用一个数组表示每个数据的连接关系,其中数组中的每个元素是该数据所属的组。如上图所示,编号为0的元素相连,编号为1的元素相连。

  • 对于Find操作,也就是查看某个元素所属的组的操作,只需返回其id号即可,非常快速,因此该种数据表示方法称为Quick Find。时间复杂度为O(1)

  • 但是对于Union操作并不方便,比如若将1和2连接起来,则需要遍历一遍数组,要么将所有编号为0的改为1,要么将所有编号为1的改为0。时间复杂度为O(n)

  • class QuickFind {
    
    private:
        int *id;    // 我们的第一版Union-Find本质就是一个数组
        int count;  // 数据个数
    
    public:
        // 构造函数
        UnionFind(int n) {
            count = n;
            id = new int[n];
            // 初始化, 每一个id[i]指向自己, 没有合并的元素
            for (int i = 0; i < n; i++)
                id[i] = i;
        }
    
        // 析构函数
        ~UnionFind() {
            delete[] id;
        }
    
        // 查找过程, 查找元素p所对应的集合编号
        int find(int p) {
            assert(p >= 0 && p < count);
            return id[p];
        }
    
        // 查看元素p和元素q是否所属一个集合
        // O(1)复杂度
        bool isConnected(int p, int q) {
            return find(p) == find(q);
        }
    
        // 合并元素p和元素q所属的集合
        // O(n) 复杂度
        void unionElements(int p, int q) {
    
            int pID = find(p);
            int qID = find(q);
    
            if (pID == qID)
                return;
    
            // 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
            for (int i = 0; i < count; i++)
                if (id[i] == pID)
                    id[i] = qID;
        }
    };
    
Quick Union
  • 在这里插入图片描述

  • 该种表示方法将每个元素看做为一个节点。每个元素指向其父节点,若该节点为根节点,则其指向自己。

  • 对于Union操作,也就是将两个元素连接起来,只需将其中一个元素的根节点指向另一个元素的根节点即可,比较方便,因此称为Quick Union。时间复杂度为O(h),h为树的高度

  • 对于Find操作,也就是查找某个节点所属的组,需要不断递归找到其相连的根节点。时间复杂度同样为O(h)

  • 上述模型同样可以使用数组来实现,其中每个元素存储器对应的父节点

  • class UnionFind{
    
    private:
        // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
        // parent[i]表示第i个元素所指向的父节点
        int* parent;
        int count;  // 数据个数
    
    public:
        // 构造函数
        UnionFind(int count){
            parent = new int[count];
            this->count = count;
            // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
            for( int i = 0 ; i < count ; i ++ )
                parent[i] = i;
        }
    
        // 析构函数
        ~UnionFind(){
            delete[] parent;
        }
    
        // 查找过程, 查找元素p所对应的集合编号
        // O(h)复杂度, h为树的高度
        int find(int p){
            assert( p >= 0 && p < count );
            // 不断去查询自己的父亲节点, 直到到达根节点
            // 根节点的特点: parent[p] == p
            while( p != parent[p] )
                p = parent[p];
            return p;
        }
    
        // 查看元素p和元素q是否所属一个集合
        // O(h)复杂度, h为树的高度
        bool isConnected( int p , int q ){
            return find(p) == find(q);
        }
    
        // 合并元素p和元素q所属的集合
        // O(h)复杂度, h为树的高度
        void unionElements(int p, int q){
    
            int pRoot = find(p);
            int qRoot = find(q);
    
            if( pRoot == qRoot )
                return;
    
            parent[pRoot] = qRoot;
        }
    };
    

优化

基于size的优化
  • 在将两个节点连接时,容易将节点数多的组连接到节点数少的组上,这样导致生成的集合会很长。如下图所示:

  • 当进行union(4,9)操作时,理想情况是将节点9连到4的根节点8上,但却有可能会出现节点8连到节点9上,导致生成的这个集合层数较高,在查找底层节点时会消耗更多的时间

  • 在这里插入图片描述

  • 因此需要存储每个集合的节点数量,在进行union操作时,将节点少的集合连接到节点多大的集合上

  • class UnionFind{
    private:
        int* parent; // parent[i]表示第i个元素所指向的父节点
        int* sz;     // sz[i]表示以i为根的集合中元素个数
        int count;   // 数据个数
    
    public:
        // 构造函数
        UnionFind(int count){
            parent = new int[count];
            sz = new int[count];
            this->count = count;
            for( int i = 0 ; i < count ; i ++ ){
                parent[i] = i;
                sz[i] = 1;
            }
        }
    
        // 析构函数
        ~UnionFind(){
            delete[] parent;
            delete[] sz;
        }
    
        // 查找过程, 查找元素p所对应的集合编号
        // O(h)复杂度, h为树的高度
        int find(int p){
            assert( p >= 0 && p < count );
            // 不断去查询自己的父亲节点, 直到到达根节点
            // 根节点的特点: parent[p] == p
            while( p != parent[p] )
                p = parent[p];
            return p;
        }
    
        // 查看元素p和元素q是否所属一个集合
        // O(h)复杂度, h为树的高度
        bool isConnected( int p , int q ){
            return find(p) == find(q);
        }
    
        // 合并元素p和元素q所属的集合
        // O(h)复杂度, h为树的高度
        void unionElements(int p, int q){
    
            int pRoot = find(p);
            int qRoot = find(q);
    
            if( pRoot == qRoot )
                return;
    
            // 根据两个元素所在树的元素个数不同判断合并方向
            // 将元素个数少的集合合并到元素个数多的集合上
            if( sz[pRoot] < sz[qRoot] ){
                parent[pRoot] = qRoot;
                sz[qRoot] += sz[pRoot];
            }
            else{
                parent[qRoot] = pRoot;
                sz[pRoot] += sz[qRoot];
            }
        }
    };
    
基于rank的优化
  • 考虑到一个节点数少的集合其层数有可能更多,而一个节点数多的集合其层数有可能少。因此,仅仅基于集合中节点的个数来作为合并的依据并不完全准确,而应该基于集合所代表的的树的层数。如下图所示,虽然以节点7为根的集合的节点数多于以节点8为根的集合,但在进行union(7,8)操作时,应将节点7连到节点8上,而不是相反。

  • 在这里插入图片描述

  • class UnionFind{
    
    private:
        int* rank;   // rank[i]表示以i为根的集合所表示的树的层数
        int* parent; // parent[i]表示第i个元素所指向的父节点
        int count;   // 数据个数
    
    public:
        // 构造函数
        UnionFind(int count){
            parent = new int[count];
            rank = new int[count];
            this->count = count;
            for( int i = 0 ; i < count ; i ++ ){
                parent[i] = i;
                rank[i] = 1;
            }
        }
    
        // 析构函数
        ~UnionFind(){
            delete[] parent;
            delete[] rank;
        }
    
        // 查找过程, 查找元素p所对应的集合编号
        // O(h)复杂度, h为树的高度
        int find(int p){
            assert( p >= 0 && p < count );
            // 不断去查询自己的父亲节点, 直到到达根节点
            // 根节点的特点: parent[p] == p
            while( p != parent[p] )
                p = parent[p];
            return p;
        }
    
        // 查看元素p和元素q是否所属一个集合
        // O(h)复杂度, h为树的高度
        bool isConnected( int p , int q ){
            return find(p) == find(q);
        }
    
        // 合并元素p和元素q所属的集合
        // O(h)复杂度, h为树的高度
        void unionElements(int p, int q){
    
            int pRoot = find(p);
            int qRoot = find(q);
    
            if( pRoot == qRoot )
                return;
    
            // 根据两个元素所在树的元素个数不同判断合并方向
            // 将元素个数少的集合合并到元素个数多的集合上
            if( rank[pRoot] < rank[qRoot] ){
                parent[pRoot] = qRoot;
            }
            else if( rank[qRoot] < rank[pRoot]){
                parent[qRoot] = pRoot;
            }
            else{ // rank[pRoot] == rank[qRoot]
                parent[pRoot] = qRoot;
                rank[qRoot] += 1;   // 此时, 我维护rank的值
            }
        }
    };
    
路径压缩
  • 路径压缩是对find过程进行优化

  • 之前的find过程需要不断遍历其父亲节点直到遇到根节点,这对于层数较高的节点来说会消耗较多时间,如下图中,若要find(4),则需要不断遍历

  • 在这里插入图片描述

  • 路径压缩是在find的过程中不断地让该节点指向其父亲节点的父亲节点。如下图所示:

  • 在这里插入图片描述

  • 更理想的情况是将层数压为一层,如下图所示:

  • 在这里插入图片描述

  • // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    int find(int p){
        assert( p >= 0 && p < count );
    
        // path compression 1
        while( p != parent[p] ){
            parent[p] = parent[parent[p]];
            p = parent[p];
        }
        return p;
    
        // path compression 2, 递归		
        // if( p != parent[p] )
        //    parent[p] = find( parent[p] );
        // return parent[p];
    }
    
  • 经过路径压缩后,时间复杂度近乎为O(1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值