开篇
这系列博客主要用来回忆研一的模式识别与机器学习课程的相关内容,大概有十几篇吧,估计需要一个很长的周期来整理,整完的部分目录如下,我也会逐步添加:
- 第一章·概论
- 第二章·
模式识别
模式
模式识别,目标对象自然是模式了,课程给出的模式定义如下:
广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。
模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。
简单的总结,模式具有以下三个直观的特性:
- 可观察性
- 可区分性
- 相似性
识别
模式识别实际上是一个无处不在的概念,比如我们常说的 “ 物以类聚,人以群分 ” 。
人类认识世界的时候会自然的代入模式识别的能力,比如我们会认出一个桌子是桌子而不是一把椅子,我们衣食住行的生活每一步都要经过一个 “ 接受信息 - 模式识别 - 作出决策 - 执行行为 ” 的过程。
人和动物的模式识别能力是极其平常的,但对计算机来说却是非常困难的。
机器学习
就不多写了,直接引用老师给的概念吧。
研究如何构造理论、算法和计算机系统,让机器通过从数据中学习后可以进行如下工作:分类和识别事物、推