JDK1.8的List排序方法源码分析

本文深入解析了Java中排序算法的实现细节,包括Arrays.sort方法对不同类型数组的处理方式,如使用快速排序处理基本类型数组,以及使用归并排序或Timsort处理对象数组。特别介绍了Timsort算法的运行原理,包括分区、排序和合并过程。
摘要由CSDN通过智能技术生成

其实集合的排序包括comparator比较器最终都是调用Arrays.sort()方法

该方法采用的算法分多种情况
java.util.Arrays.sort(T[] arr)使用的是归并排序
java.util.Arrays.sort(int[] arr) 包括short、long、char等使用的是快速排序

下面看源码
Arrays 类
    public static void sort(int[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }

    /**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     */
    static void sort(int[] a, int left, int right,
                     int[] work, int workBase, int workLen) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

这个QUICKSORT_THRESHOLD 的值是286

这个sort()方法里面用到了传统的插入算法

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        // Implementation note: variable "right" is increased by 1.
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        // Determine alternation base for merge
        byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        // Use or create temporary array b for merging
        int[] b;                 // temp array; alternates with a
        int ao, bo;              // array offsets from 'left'
        int blen = right - left; // space needed for b
        if (work == null || workLen < blen || workBase + blen > work.length) {
            work = new int[blen];
            workBase = 0;
        }
        if (odd == 0) {
            System.arraycopy(a, left, work, workBase, blen);
            b = a;
            bo = 0;
            a = work;
            ao = workBase - left;
        } else {
            b = work;
            ao = 0;
            bo = workBase - left;
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                        b[i + bo] = a[p++ + ao];
                    } else {
                        b[i + bo] = a[q++ + ao];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i + bo] = a[i + ao]
                );
                run[++last] = right;
            }
            int[] t = a; a = b; b = t;
            int o = ao; ao = bo; bo = o;
        }
    }

这里用到了快速排序

 


    public static <T> void sort(T[] a, Comparator<? super T> c) {
        if (c == null) {
            sort(a);
        } else {
            if (LegacyMergeSort.userRequested)
                legacyMergeSort(a, c);
            else
                TimSort.sort(a, 0, a.length, c, null, 0, 0);
        }
    }

LegacyMergeSort.userRequested 条件如果为true,则用老的排序方法,默认是false,即使用timsort

看有没有自定义比较器,如果有自定义比较器就用带比较器的timsort排序,如果没有就用不带比较器的timsort排序,其实比较的逻辑没什么不同,timsort排序其实是归并排序和插入排序的优化版,下面看timsort方法

    

    /**
     * Sorts the given range, using the given workspace array slice
     * for temp storage when possible. This method is designed to be
     * invoked from public methods (in class Arrays) after performing
     * any necessary array bounds checks and expanding parameters into
     * the required forms.
     */
    static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
                         T[] work, int workBase, int workLen) {
        assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;

        int nRemaining  = hi - lo;
        if (nRemaining < 2)
            return;  // Arrays of size 0 and 1 are always sorted

        // If array is small, do a "mini-TimSort" with no merges
        if (nRemaining < MIN_MERGE) {
            int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
            binarySort(a, lo, hi, lo + initRunLen, c);
            return;
        }

 

这个MIN_MERGE的值是32,如果数组长度小于这个值就走binarySort方法,其采用的算法是插入排序

 

 /**
     * Sorts the specified portion of the specified array using a binary
     * insertion sort.  This is the best method for sorting small numbers
     * of elements.  It requires O(n log n) compares, but O(n^2) data
     * movement (worst case).
     *
     * If the initial part of the specified range is already sorted,
     * this method can take advantage of it: the method assumes that the
     * elements from index {@code lo}, inclusive, to {@code start},
     * exclusive are already sorted.
     */
    @SuppressWarnings("fallthrough")
    private static <T> void binarySort(T[] a, int lo, int hi, int start,
                                       Comparator<? super T> c) {
        assert lo <= start && start <= hi;
        if (start == lo)
            start++;
        for ( ; start < hi; start++) {
            T pivot = a[start];

            // Set left (and right) to the index where a[start] (pivot) belongs
            int left = lo;
            int right = start;
            assert left <= right;
            /*
             * Invariants:
             *   pivot >= all in [lo, left).
             *   pivot <  all in [right, start).
             */
            while (left < right) {
                int mid = (left + right) >>> 1;
                if (c.compare(pivot, a[mid]) < 0)
                    right = mid;
                else
                    left = mid + 1;
            }
            assert left == right;

            /*
             * The invariants still hold: pivot >= all in [lo, left) and
             * pivot < all in [left, start), so pivot belongs at left.  Note
             * that if there are elements equal to pivot, left points to the
             * first slot after them -- that's why this sort is stable.
             * Slide elements over to make room for pivot.
             */
            int n = start - left;  // The number of elements to move
            // Switch is just an optimization for arraycopy in default case
            switch (n) {
                case 2:  a[left + 2] = a[left + 1];
                case 1:  a[left + 1] = a[left];
                         break;
                default: System.arraycopy(a, left, a, left + 1, n);
            }
            a[left] = pivot;
        }
    }

 

接上面

        /**
         * March over the array once, left to right, finding natural runs,
         * extending short natural runs to minRun elements, and merging runs
         * to maintain stack invariant.
         */
        TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
        int minRun = minRunLength(nRemaining);

将数组划分为分区,每个分区做成严格升序,这个分区的长度如果小于64,也会采用插排序,然后进行合并
        do {
            // Identify next run
            int runLen = countRunAndMakeAscending(a, lo, hi, c);

            // If run is short, extend to min(minRun, nRemaining)
            if (runLen < minRun) {
                int force = nRemaining <= minRun ? nRemaining : minRun;
                binarySort(a, lo, lo + force, lo + runLen, c);
                runLen = force;
            }

            // Push run onto pending-run stack, and maybe merge
            ts.pushRun(lo, runLen);
            ts.mergeCollapse();   //将分区压栈

            // Advance to find next run
            lo += runLen;
            nRemaining -= runLen;
        } while (nRemaining != 0);

        // Merge all remaining runs to complete sort
        assert lo == hi;
        ts.mergeForceCollapse();
        assert ts.stackSize == 1;
    }
  
合并完所有分区,则整个数组排序完毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值