文章目录
Contest100000595 - 《算法笔记》5.8小节——数学问题->组合数
5.8小节——数学问题->组合数
5.8.1关于n!的一个问题:求n!中有多少个质因子p
法一:时间复杂度O(nlogn)
//求n!中有多少个质因子p,时间复杂度O(nlogn)
int cal(int n,int p){
int ans = 0;
for(int i=2;i <= n;i++){//遍历2~n
int temp = i;
while(temp % p == 0){//只要temp还是p的倍数
ans++;//p的个数加1
temp /= p;
}
}
return ans;
}
法二:时间复杂度O(log(n))算法
//上面的方法不适用于n很大的情况 ,进一步改进为Olog(n)算法
//n!中有多少个质因子p法二,用质因子的n次幂做单位来衡量n
int cal(int n,int p){
int ans = 0;
while(n){
ans += n/p; //累加n/p^k
n /= p;//相当于分母多乘一个p
}
return ans;
}
法三:递推规律
//进一步发现递推规律,n!中质因子p的个数,
//实际上等于1~n中p的倍数的个数n/p加上(n/p)!中质因子p的个数
int cal(int n,int p){
if(n < p) return 0;//n<p时1~n中不可能有质因子p
return n / p + cal(n/p,p); //返回n/p加上(n/p)!中质因子p的个数
}
5.8.2组合数的计算
问题一:如何计算C(n,m)
法一:通过定义式直接计算
//法一:定义法
long long C(long long n,long long m){
long long ans = 1;
for(long long i = 1;i <= n;i++){
ans += 1;
}
for(long long i = 1;i <= m;i++){
ans /= i;
}
for(long long i=1;i <= n-m;i++){
ans /= i;
}
return ans;
}
法二:递推式计算
//法二:递推计算
//法2.1 递归 代码,会产生重复计算问题
long long C(long long n,long long m){
if(m == 0 || m == n) return 1;
return C(n - 1,m) + C(n - 1,m - 1);
}
//法2.2 递归 解决重复计算问题(记录已经计算过的C(n,m)
long long res[67][67] = {0};
long long C(long long n,long long m){
if(m == 0 || m == n) return 1;
if(res[n][m] != 0) return res[n][m];
return res[n][m] = C(n-1,m) + C(n-1,m-1);//赋值给res[n][m]并返回
}
//法2.3 递推 将整张表都计算出来
const int n = 60;
void calC(){
for(int i=0;i<=n;i++){
res[i][0] = res[i][j] = 1;//初始化边界
}
for(int i=2;i<=n;i++){
for(int j=0;j<=i/2;j++){
res[i][j] = res[i-1][j] + res[i-1][j-1];//递推计算 C(i,j)
res[i][i-j] = res[i][j];//C(i,i-j) = C(i,j)
}
}
}
方法三:通过定义式的变形来计算
//方法三:通过定义式的变形来计算
long long C(long long n,long long m){
long long ans = 1;
for(long long i=1;i <= m;i++){
ans = ans * (n-m+i) / i;//注意一定要先乘再除
}
return ans;
}
问题二:如何计算C(n,m)%p
法一:递推公式
//方法一:递推公式
//法1.1 递归 解决重复计算问题(记录已经计算过的C(n,m)%p
int res[1010][1010] = {0};
int C(int n,int m,int p){
if(m == 0 || m == n) return 1;//C(n,0) = C(n,n)=1
if(res[n][m] != 0) return res[n][m];//已经有值
return res[n][m] = (C(n-1,m) + C(n-1,m-1)) % p;//赋值给res[n][m]并返回
}
//法1.2 递推 将整张表都计算出来
const int n = 1010;
void calC(){
for(int i=0;i<=n;i++){
res[i][0] = res[i][j] = 1;//初始化边界
}
for(int i=2;i<=n;i++){
for(int j=0;j<=i/2;j++){
res[i][j] = (res[i-1][j] + res[i-1][j-1]) % p;//递推计算 C(i,j)
res[i][i-j] = res[i][j];//C(i,i-j) = C(i,j)
}
}
}
法二:根据定义式计算
//法二:根据定义式计算
//求n!中有多少个质因子p,时间复杂度O(nlogn)
int cal(int n,int p){
int ans = 0;
for(int i=2;i <= n;i++){//遍历2~n
int temp = i;
while(temp % p == 0){//只要temp还是p的倍数
ans++;//p的个数加1
temp /= p;
}
}
return ans;
}
//使用筛法得到素数表prime,注意表中最大素数不得小于n
int prime[maxn];
//计算C(n,m)%p
int C(int n,int m,int p){
int ans = 1;
//遍历不超过n的所有质数
for(int i=0;prime[i] <= n;i++){
//计算C(n,m)中prime[i]的指数c,cal(n,k)为n!中含质因子k的个数
int c = cal(n,prime[i]) - cal(m,prime[i]) - cal(n-m,prime[i]);
//快速幂计算prime[i]^c%p
ans = ans * binaryPow(prime[i],c,p) % p;
}
return ans;
}
法三:通过定义式的变形来计算
法三情况1:求C(n,m)%p,且m<p
//求C(n,m)%p,且m<p
int C(int n,int m,int p){
int ans = 1;
for(int i=1;i <= m;i++){
ans = ans * (n-m+i) % p;
ans = ans * inverse(i,p) % p;//求i模p的逆元
}
return ans;
}
法三情况2:求C(n,m)%p,且p是素数
//情况2:求C(n,m)%p,且p是素数
int C(int n,int m,int p){
//ans存放计算结果,numP统计分子中的p比分母中的p多几个
int ans = 1,numP = 0;
for(int i=1;i<=m;i++){
int temp = n-m+i;//分子
while(temp % p == 0){//去除分子中的所有p,同时累计numP
numP++;
temp /= p;
}
ans = ans * temp % p;//乘以分子中除了p以外的部分
temp = i;//分母
while(temp % p == 0){//去除分母中的所有p,同时减少numP
numP--;
temp /= p;
}
ans = ans * inverse(temp,p) % p;//除以分母中除了p以外的部分
}
if(numP > 0) return 0;//分子中p的个数多于分母,直接返回0
else return ans;//分子中p的个数等于分母,返回计算的结果
}
法三情况3:求C(n,m)%p,m任意,但p可能不是素数
方法四:Lucas定理
//方法四:Lucas定理
int Lucas(int n,int m){
if(m == 0) return 1;
return C(n % p,m % p) * Lucas(n / p,m / p) % p;
}
Codeup习题:Contest100000595 - 《算法笔记》5.8小节——数学问题->组合数
4826-Problem-A-计算组合数
题目链接: http://codeup.cn/problem.php?cid=100000595&pid=0
//4826-Problem-A-计算组合数
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
//法2.2 递归 解决重复计算问题(记录已经计算过的C(n,m)
/*
long long res[1010][1010] = {0};
long long C(long long n,long long m){
if(m == 0 || m == n) return 1;
if(res[n][m] != 0) return res[n][m];
return res[n][m] = C(n-1,m) + C(n-1,m-1);//赋值给res[n][m]并返回
}
*/
long long C(long long n,long long m){
long long ans = 1;
for(long long i=1;i <= m;i++){
ans = ans * (n-m+i) / i;//注意一定要先乘再除
}
return ans;
}
int main()
{
long long m,n;
while(cin>>m>>n){
cout<<C(m,n)<<endl;
}
return 0;
}
5849-Problem-B-求组合数
题目链接:http://codeup.cn/problem.php?cid=100000595&pid=1
//5849-Problem-B-求组合数
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
//方法三:通过定义式的变形来计算
long long C(long long n,long long m){
long long ans = 1;
for(long long i=1;i <= m;i++){
ans = ans * (n-m+i) / i;//注意一定要先乘再除
}
return ans;
}
int main()
{
long long m,n;
while(cin>>m>>n){
cout<<C(m,n)<<endl;
}
return 0;
}
小结
组合数的计算有技巧,注意类型用long long,范围为20位内,记住一个简洁的函数求解方法即可