Contest100000595 - 《算法笔记》5.8小节——数学问题->组合数

Contest100000595 - 《算法笔记》5.8小节——数学问题->组合数

5.8小节——数学问题->组合数

5.8.1关于n!的一个问题:求n!中有多少个质因子p

法一:时间复杂度O(nlogn)

在这里插入图片描述

//求n!中有多少个质因子p,时间复杂度O(nlogn) 
int cal(int n,int p){
	int ans = 0;
	for(int i=2;i <= n;i++){//遍历2~n
		int temp = i;
		while(temp % p == 0){//只要temp还是p的倍数 
			ans++;//p的个数加1
			temp /= p; 
		} 
	}
	return ans;
}	
	 

法二:时间复杂度O(log(n))算法

在这里插入图片描述

//上面的方法不适用于n很大的情况 ,进一步改进为Olog(n)算法
//n!中有多少个质因子p法二,用质因子的n次幂做单位来衡量n
int cal(int n,int p){
	int ans = 0;
	while(n){
		ans += n/p;	//累加n/p^k
		n /= p;//相当于分母多乘一个p 
	}
	return ans; 
}	
	 

法三:递推规律

在这里插入图片描述

//进一步发现递推规律,n!中质因子p的个数,
//实际上等于1~n中p的倍数的个数n/p加上(n/p)!中质因子p的个数 
int cal(int n,int p){
	if(n < p)	return 0;//n<p时1~n中不可能有质因子p 
	return n / p + cal(n/p,p);	//返回n/p加上(n/p)!中质因子p的个数
}	
	 

5.8.2组合数的计算

问题一:如何计算C(n,m)

法一:通过定义式直接计算

在这里插入图片描述

//法一:定义法 
long long C(long long n,long long m){
	long long ans = 1;
	for(long long i = 1;i <= n;i++){
		ans += 1;
	}
	for(long long i = 1;i <= m;i++){
		ans /= i;
	}
	for(long long i=1;i <= n-m;i++){
		ans /= i;
	}
	return ans;
}	
	 

法二:递推式计算
在这里插入图片描述

//法二:递推计算 
//法2.1 递归 代码,会产生重复计算问题 
long long C(long long n,long long m){
	if(m == 0 || m == n)	return 1;
	return C(n - 1,m) + C(n - 1,m - 1);
} 

//法2.2 递归 解决重复计算问题(记录已经计算过的C(n,m)
long long  res[67][67] = {0};
long long C(long long n,long long m){
	if(m == 0 || m == n)	return 1;
	if(res[n][m] != 0)	return res[n][m];
	return res[n][m] = C(n-1,m) + C(n-1,m-1);//赋值给res[n][m]并返回 
} 

//法2.3 递推 将整张表都计算出来 
const int n = 60;
void calC(){
	for(int i=0;i<=n;i++){
		res[i][0] = res[i][j] = 1;//初始化边界 
	}
	for(int i=2;i<=n;i++){
		for(int j=0;j<=i/2;j++){
			res[i][j] = res[i-1][j] + res[i-1][j-1];//递推计算 C(i,j)
			res[i][i-j] = res[i][j];//C(i,i-j) = C(i,j)  
		}
	}
}

方法三:通过定义式的变形来计算
在这里插入图片描述

//方法三:通过定义式的变形来计算
long long C(long long n,long long m){
	long long ans = 1;
	for(long long i=1;i <= m;i++){
		ans = ans * (n-m+i) / i;//注意一定要先乘再除 
	}
	return ans;
}	 

问题二:如何计算C(n,m)%p

在这里插入图片描述
法一:递推公式

//方法一:递推公式
//法1.1 递归 解决重复计算问题(记录已经计算过的C(n,m)%p
int  res[1010][1010] = {0};
int C(int n,int m,int p){
	if(m == 0 || m == n)	return 1;//C(n,0) = C(n,n)=1 
	if(res[n][m] != 0)	return res[n][m];//已经有值 
	return res[n][m] = (C(n-1,m) + C(n-1,m-1)) % p;//赋值给res[n][m]并返回 
} 

//法1.2 递推 将整张表都计算出来 
const int n = 1010;
void calC(){
	for(int i=0;i<=n;i++){
		res[i][0] = res[i][j] = 1;//初始化边界 
	}
	for(int i=2;i<=n;i++){
		for(int j=0;j<=i/2;j++){
			res[i][j] = (res[i-1][j] + res[i-1][j-1]) % p;//递推计算 C(i,j)
			res[i][i-j] = res[i][j];//C(i,i-j) = C(i,j)  
		}
	}
}  

法二:根据定义式计算
在这里插入图片描述

//法二:根据定义式计算
//求n!中有多少个质因子p,时间复杂度O(nlogn) 
int cal(int n,int p){
	int ans = 0;
	for(int i=2;i <= n;i++){//遍历2~n
		int temp = i;
		while(temp % p == 0){//只要temp还是p的倍数 
			ans++;//p的个数加1
			temp /= p; 
		} 
	}
	return ans;
}
//使用筛法得到素数表prime,注意表中最大素数不得小于n
int prime[maxn];
//计算C(n,m)%p
int C(int n,int m,int p){
	int ans = 1;
	//遍历不超过n的所有质数
	for(int i=0;prime[i] <= n;i++){
		//计算C(n,m)中prime[i]的指数c,cal(n,k)为n!中含质因子k的个数
		int c = cal(n,prime[i]) - cal(m,prime[i]) - cal(n-m,prime[i]);
		//快速幂计算prime[i]^c%p
		ans = ans * binaryPow(prime[i],c,p) % p; 
	}	
	return ans;
}	 

法三:通过定义式的变形来计算
法三情况1:求C(n,m)%p,且m<p
在这里插入图片描述

//求C(n,m)%p,且m<p
int C(int n,int m,int p){
	int ans = 1;
	for(int i=1;i <= m;i++){
		ans = ans * (n-m+i) % p;
		ans = ans * inverse(i,p) % p;//求i模p的逆元 
	}
	return ans;
}	 

法三情况2:求C(n,m)%p,且p是素数
在这里插入图片描述

//情况2:求C(n,m)%p,且p是素数
int C(int n,int m,int p){
	//ans存放计算结果,numP统计分子中的p比分母中的p多几个
	int ans = 1,numP = 0;
	for(int i=1;i<=m;i++){
		int temp = n-m+i;//分子
		while(temp % p == 0){//去除分子中的所有p,同时累计numP
			numP++;
			temp /= p; 
		} 
		ans = ans * temp % p;//乘以分子中除了p以外的部分
		
		temp = i;//分母
		while(temp % p == 0){//去除分母中的所有p,同时减少numP
			numP--;
			temp /= p; 
		} 
		ans = ans * inverse(temp,p) % p;//除以分母中除了p以外的部分 
	} 
	if(numP > 0)	return 0;//分子中p的个数多于分母,直接返回0
	else	return ans;//分子中p的个数等于分母,返回计算的结果 
} 
 

法三情况3:求C(n,m)%p,m任意,但p可能不是素数
在这里插入图片描述

方法四:Lucas定理
在这里插入图片描述


//方法四:Lucas定理 
int Lucas(int n,int m){
	if(m == 0)	return 1;
	return C(n % p,m % p) * Lucas(n / p,m / p) % p;
}	 

在这里插入图片描述

Codeup习题:Contest100000595 - 《算法笔记》5.8小节——数学问题->组合数

4826-Problem-A-计算组合数

题目链接: http://codeup.cn/problem.php?cid=100000595&pid=0

//4826-Problem-A-计算组合数
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;

//法2.2 递归 解决重复计算问题(记录已经计算过的C(n,m)
/*
long long  res[1010][1010] = {0};
long long C(long long n,long long m){
	if(m == 0 || m == n)	return 1;
	if(res[n][m] != 0)	return res[n][m];
	return res[n][m] = C(n-1,m) + C(n-1,m-1);//赋值给res[n][m]并返回 
} 
*/
long long C(long long n,long long m){
	long long ans = 1;
	for(long long i=1;i <= m;i++){
		ans = ans * (n-m+i) / i;//注意一定要先乘再除 
	}
	return ans;
}



int main()
{
	long long m,n;
	while(cin>>m>>n){
		cout<<C(m,n)<<endl;
	}
	return 0;	
}	 

5849-Problem-B-求组合数

题目链接:http://codeup.cn/problem.php?cid=100000595&pid=1

//5849-Problem-B-求组合数
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
//方法三:通过定义式的变形来计算
long long C(long long n,long long m){
	long long ans = 1;
	for(long long i=1;i <= m;i++){
		ans = ans * (n-m+i) / i;//注意一定要先乘再除 
	}
	return ans;
}

int main()
{
	long long m,n;
	while(cin>>m>>n){
		cout<<C(m,n)<<endl;
	}
	return 0;	
}	 

小结

组合数的计算有技巧,注意类型用long long,范围为20位内,记住一个简洁的函数求解方法即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李霁明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值