- 博客(8)
- 收藏
- 关注
原创 一目了然看懂维特比算法原理
一、维特比算法简介 维特比算法是一种以动态规划思想寻找篱笆型图的最短路径的方法。它被用来解决我们所熟知的隐马尔科夫模型的预测问题,即用动态规划思想寻找概率最大的路径。 根据动态规划的思想,通过一步步地寻找局部最优来最终获得全局最优。 其过程分为两步:首先寻找概率最大的路径,其次在得到概率最大路径之后,从最优路径终点开始,回溯地寻找最优路径上当前点的上一个点,直到找到
2020-06-23 23:31:53 1089
原创 超容易理解的极大似然估计
一、为什么要用极大似然估计在一般情况下,要求一个样本属于哪一类,首先要求出样本在属于各类的概率,即后验概率:P(w|x),其中w代表类别(w可能取值w1、w2、…wN),我们
2020-06-23 22:41:15 1100
原创 python二维数组的两种初始化方法及所带来的问题
假设希望初始化一个3*3的列表,我们有两种方法:# 第一种方法a = [[0]*3]*3# 第二种方法a = [[0]*3 for _ in range(3)]那么这两种初始化方法会对数组的使用产生什么影响呢?假设对数组a的某一元素赋值:a[0][1] = 1赋值后会发现使用两种初始化方法得到的数组在赋值后的值是不同的,第一种初始化方法获得的数组在赋值后的值为:# 利用第一种方法初始化的数组aa = [0 1 0] [0 1 0] [0 1 0]而利用第二种初始化方法获得的
2020-06-14 23:10:50 579
原创 腾讯NLP算法实习面经
#腾讯NLP算法岗实习面试经验一、背景:本人2021届计算机专业硕士,目前研一,因为学校研究生学制是两年,所以春招投递了腾讯的NLP算法实习。面试所问到的问题会与自己的研究方向相关,所以下面提到的面试官所提出的问题可以作为参考,但也有一些普适的问题可以供大家作为今后面试的经验。二、一面(技术面)一面采用电话面试的形式,面试官应该是一个比较年轻的前辈,交流起来很温和,总体的体验很好。1、自我介绍主要介绍本人的基本情况,可以说一下主要研究方向、做过什么比较突出有亮点的事情,介绍个人性格及能力部分不要
2020-05-27 23:48:38 970
原创 交叉熵损失函数及各类损失函数总结
交叉熵损失函数及各类损失函数总结1.交叉熵代价函数的引入:参考地址:https://blog.csdn.net/wtq1993/article/details/51741471.2.sigmoid与binary crossentropy,softmax与categorical crossentropy的联系:可以参考:https://www.zhihu.com/question/3630...
2020-03-20 03:11:13 131
原创 快速看懂tf2.0-tf.keras.layersEmbedding()使用方法
tf2.0-tf.keras.layersEmbedding()使用方法@[TOC]一、
2020-03-14 23:39:09 13103
原创 tf2.0-CSV文件的生成及使用方法
tf2.0-CSV文件的生成及使用方法一、数据集选择测试数据集选择使用California房价预测数据集下载方法:from sklearn.datasets import fetch_california_housinghousing = fetch_california_housing()数据形式为每八个特征对应一条房价之后对数据进行数据集分割以及归一化处理:from skle...
2020-03-14 20:34:12 577
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人