复杂度的渐进表示

复杂度的渐进表示

1. O(n)(常用)

T ( n ) = O ( f ( n ) ) T(n)=O(f(n)) T(n)=O(f(n))
这个式子表示存在常数 C > 0 C>0 C>0 n 0 > 0 n_0 >0 n0>0使得当 n > = n 0 n>=n_0 n>=n0 时, T ( n ) < = C ∗ O ( f ( n ) ) T(n)<=C*O(f(n)) T(n)<=CO(f(n))
简单来说, O ( f ( n ) ) O(f(n)) O(f(n)) 表示的就是 f ( n ) f(n) f(n)的复杂度中的某个上界
例如, f ( n ) = ( n ∗ ( n + 1 ) ) / 2 f(n)=(n*(n+1))/2 f(n)=(n(n+1))/2 O ( f ( n ) ) = n 2 O(f(n))=n^2 O(f(n))=n2(不唯一)

2. T(n)

T ( n ) = Ω ( f ( n ) ) T(n)=Ω(f(n)) T(n)=Ω(f(n))
这个式子表示存在常数 C > 0 C>0 C>0 n 0 > 0 n_0 >0 n0>0使得当 n > = n 0 n>=n_0 n>=n0 时, T ( n ) > = C ∗ Ω ( f ( n ) ) T(n)>=C*Ω(f(n)) T(n)>=CΩ(f(n))
简单来说, Ω ( f ( n ) ) Ω(f(n)) Ω(f(n)) 表示的就是 f ( n ) f(n) f(n)的复杂度的某个下界
例如, f ( n ) = ( n ∗ ( n + 1 ) ) / 2 f(n)=(n*(n+1))/2 f(n)=(n(n+1))/2 Ω ( f ( n ) ) = n 2 / 2 Ω(f(n))=n^2/2 Ω(f(n))=n2/2(不唯一)

3. Θ(n)

T ( n ) = Θ ( f ( n ) ) T(n)=Θ(f(n)) T(n)=Θ(f(n))
这个式子表示同时有以下两个式子成立 T ( n ) = O ( f ( n ) ) T(n)=O(f(n)) T(n)=O(f(n)) T ( n ) = Ω ( f ( n ) ) T(n)=Ω(f(n)) T(n)=Ω(f(n))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crer_lu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值