插值方法: 拉格朗日插值--逐步插值的自适应算法

本文详细介绍了拉格朗日插值方法,探讨了逐步插值的自适应算法,旨在通过数据加工得到插值点上的精确结果。理论部分涉及多项式基函数的选择和Lagrange插值构造,算法设计部分提出了一种根据数据表和插值点计算插值结果的流程。案例分析展示了如何使用不同阶数的插值多项式预测人口数据,最后提供了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

插值方法: 拉格朗日插值--逐步插值的自适应算法


1.问题描述

所谓插值,就是设法利用已给数据表求出给定点x的函数值y.表中的数据点

称为插值节点,所要插值的点x称插值点。

插值计算的目的在于,通过尽可能简便的方法,利用所给数据表加工出插值点x上具有足够精度的插值结果y.

在这种意义,插值过程是个数据加工的过程。


2.理论与方法


Largrange 插值,回顾我们之前的多项式插值

多项式的系数与所给的数据点并没有直接的联系,所以我们考虑增加一个多项式的基函数会不会更好,例如,这里

这样一个表达式是很容易进行操作的,对于不同点或插值的公式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值