业务的重要性
基于业务才能建立好的数据模型。
基本APP的指标
分析指标的作用
指标建立的要点
- 核心指标
从结构化的角度考虑,核心指标就是金字塔的塔尖。
以初创公司为例:- 创业早期,关注新增用户量
- 创业中期,需要带动用户,关注用户活跃
- 创业后期,需要商业化,关注营收
- 好的指标应该是比率
- 好的指标应该能带来显著的效果
- 好的指标不应该虚荣
比如新增用户量,是通过砸钱带来的 - 好的指标不应该复杂,直接干净简单利落。
常见业务分析指标
1. 市场营销指标
客户/用户的生命周期
企业/产品和消费者,在整个业务关系阶段的周期。
根据不同业务划分的阶段不同,传统的营销中,分为潜在用户、兴趣用户、新客户、老/熟客户、流失客户。
用户价值和RFM模型
大多通过指数法,将业务最关注的几个指标一起计算。
比如,用户贡献 = 产出量/投入量*100%。
RFM模型,是用户生命周期中,衡量客户价值的立方体模型,将用户划分为多个群体。
- R: 最近一次消费时间
- F: 消费频次
- M: 总消费金额
需注意:F和M是在同一个时间段内。
用户分群、营销矩阵
用户分群,是市场营销中的一种常见策略, 它提取用户的几个核心维度,用象限法将其归纳和分类。
2. 产品运营指标:AARRR
Acquisition:用户获取
- 渠道达到量:俗称曝光量。有多少人看到了产品推广相关的线索。
- 渠道转化率:有多少用户因为曝光而心动 Cost Per,包含CPM、CPC、CPS、CPD、CPT等。
- 渠道ROI:推广营销的熟悉KPI,投资回报率。
渠道ROI = 利润 / 投资 * 100% - 日应用下载量:APP的下载量,这里指点击下载,不代表下载完成。
- 日新增用户数:以用户注册提交资料为基准。
- 获客成本:获取一位用户需要支付的成本。
- 一次会话用户数占比:指新用户下载完APP,仅打开过产品一次,且该次使用时长在2分钟以内。比如机器人刷单。
Activation:用户活跃
- 日/周/月活跃用户应用下载量:活跃的标准是用户用过产品,广义上,网页浏览内容算“用”,在公共号下单算“用”,不限于打开APP。
- 活跃用户比:活跃用户数在总用户数中的比例,衡量的是产品健康程度。
- 用户会话session次数:用户打开产品操作和使用,直到退出产品的整个周期。5分钟内没有操作,默认会话操作结束。
- 用户访问时长:一次会话的持续时间
- 用户平均访问次数:一段时间内,用户平均产生会话次数。
Retention:用户留存
用户留存,是指用户在某段时间内使用产品,过了一段时间后仍旧继续使用。
假设产品某天新增用户是1000:
- 次日留存率:如果第二天仍旧活跃的用户有350个,则次日留存率为35%
- 7日留存率:如果第7天的活跃用户有100个,则七日留存率为10%
Revenue:营收
- 付费用户数:即花了钱的用户数量。
- 付费用户数占比:衡量收入健康程度。每日付费用户占活跃用户数比,也可以计算总付费用户占总用户数比。
- ARPU:某段时间内,每位用户的平均收入。比如游戏氪金用户每月氪金一万。
- ARPPU:某段时间内,每位付费用户平均收入,排除了未付费的。
- 客单价:每位用户平均购买商品金额。
客单价 = 销售总额 / 顾客数。
与ARPU的区别是,ARPU是有时间限制的,而客单价没有。 - LTV:用户生命周期价值,和市场营销的客户价值接近,经常用在游戏运营和电商运营中,一些短平快的项目。
LTV = ARPU *1/流失率。经验公式,不一定百分之百准确。
Refer:传播
- K因子:每个用户能够带来几个新用户。
K因子 = 用户数 * 平均邀请人数 * 邀请转化率。
K因子>=1, 说明产品可通过传播,造成自增长,比较理想的状态。 - 用户分享率:某功能/页面中,分享用户数占浏览页面人数之比。
- 活动/邀请曝光量:线上活动中,该页面被人浏览的次数。一般代指微信朋友圈
3. 用户行为指标
用户行为的数据分析是一个很广泛的课题,不同的业务领域背景下,用户行为分析都不一样。
功能使用
- 功能使用率/渗透率:使用某功能的用户数,占总活跃用户之比。
比如点赞、评论、收藏、关注、搜索、添加好友,均可算做功能使用。这些指标,在特定的业务中均有使用。
用户会话
- 会话session:也叫做session,是用户在一次访问过程中,从开始到结束的整个过程。在网页端,30分钟内没有操作,默认会话操作结束。
- 路径图(桑基图):用户在一次会话过程中,其访问产品内部的浏览轨迹。通过此,可以加工出关键路径的转化率。
4. 电子商务指标
购物篮分析
- 笔单价:用户每次购买支付的金额,即每笔订单的支出。和客单价对应。
- 件单价:商品的平均价格
- 成交率:支付成功的用户,在总的客流量中的占比。
- 购物篮系数:平均每笔订单中,卖出了多少商品。购物篮系数是多多益善,它也和商品的关联规则有关系。
复购率和回购率
- 复购率:一段时间内,多次消费的用户,占总消费用户数之比。
例如,4月有1000位用户消费,其中500位消费了两次以上,则复购率是50%。 - 回购率:一段时间内,消费过的用户,在下一段时间内,仍旧消费的占比。
例如,4月有1000位用户消费,其中600位在5月继续消费,则回购率为60%。
5. 流量指标
浏览量和访客量
- PV:浏览次数。互联网早期的统计指标,用户在网页的一次访问请求,可以看作一个PV,用户看了10个网页,则PV为10。
刷新和回退也算PV,因为是发送了访问请求。 - UV:独立访客数。是一定时间内,访问网页的人数。在同一天内,不管用户访问了多少网页,他都只算一个独立访客。
技术上,UV通过cookie或IP衡量。
【待验证】在微信上,新老客户的UV是不太准的。是因为微信不会记录cookie,隔一段时间就会清理掉。具体表现是每次进入在微信浏览网页,都是新用户,不会有账号保留。
访客行为
- 新老访客占比:衡量网站的生命力。
新访客占比,能反映出网站对新用户的吸引力和推广效果。
老访客占比,能反映出网站的粘性
新老访客的占比太高或者太低都不太好,要有一个中间状态。 - 访客时间:衡量内容质量,不是看内容的UV,而是看内容的访问时间。
- 访客平均访问页数:衡量网站对访客的吸引力,是访问的深度。
- 来源:访客从哪里来,一般涉及到多维分析。技术上,通过来源网站的参数提取,可以区分SEM,SEO或者外链等。
- 用户行为转化率:在网站上,进行了相应的操作的用户,占总访客的比例。
比如注册、购买等行为。 - 首页访客占比:只看了首页的用户,占总访客的比例。衡量网站的结构,对新用户的导航是否友好。
退出率和跳出率
- 退出率:从该页退出的页面访问数 / 进入该页的访问数。
在网页产品结构中使用,偏向功能性的产品,衡量网站结构设计的如何,以及用户是否能找到想要的内容。任何页面都有退出率。
例如,有1000个人进入某个页面,其中500个人退出了,则退出率是50%。 - 跳出率:浏览单页即退出的次数 / 访问次数。
在营销中使用,一般衡量落地页(landing page)、营销页等页面。
怎么生成指标
通过组合的方式,生成需要的指标。比如,比率是通过两个已知指标的加工形成的。