杭电1438 钥匙计数一

题目
这道题用递推公式做比较简洁,但是难想的就是递推关系;
递推过程如下:
1、如果前n-1个是正确的排序那么F[n]=F[n-1]*4;
2、如果前n-1个不是正确的排序但是加上2或3后就是了则前n-1个必然全部都是1或4组成 那么 F[n]+=(2^(n-1)-2)*2 ;为什么要减掉2呢,因为要排除全部都是1或4的情况。
3、如果前n-1个不是,但是加上1或4后就是了,显然第n-1个也是1或4,这时候我们就要看前n-2个了,显然前n-2个可以是1,2,3,4中的任意一个,既 4^n-2,但是我们要排除掉全部都是由1,4组成的,既 2^n-2。这样递推公式是不是出来了呢?
F[n]=F[n-1]X4+2n-4+(4n-2-2^n-2)X2;
公式真的是这样吗?编辑运行一看,错了。问题出在哪了?
4、冥思苦想了许久发现,哦!!!,原来加重了,要是第n-2个是以1、4结尾呢?然后第n-1个也是1、4。那么与我们第三提出来的前n-1不是正确的排列相矛盾;
那么我们就再加一个变量a[n]表示第n个一1、4结尾的正确排序数目;
那么我们再看看递推公式F[n]=F[n-1]*4+2n-4+2*4n-2-2^n-1-a[n-1];
ac 代码如下:

#include<stdio.h>
int main()
{
	long long sum,a[32],f[32],s;
	int i;
	f[2]=0;f[3]=8;//表示总的钥匙数 
	a[2]=0;a[3]=4;//表示以第n个以1、4结尾的数目 
	sum=8;//sum表示2的n-1次方 
	s = 16;//s表示4的n-2次方 
	for(i=4;i<=31;i++)
	{
		f[i]=f[i-1]*4+sum*2-4+(2*s-sum)-a[i-1];
		a[i] = 2*f[i-1]+(2*s-sum)-a[i-1];//更新以1、4结尾的钥匙数目 
		sum*=2;
		s*=4;
	}
	for(i=2;i<=31;i++) printf("N=%d: %lld\n",i,f[i]);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值