题目
这道题用递推公式做比较简洁,但是难想的就是递推关系;
递推过程如下:
1、如果前n-1个是正确的排序那么F[n]=F[n-1]*4;
2、如果前n-1个不是正确的排序但是加上2或3后就是了则前n-1个必然全部都是1或4组成 那么 F[n]+=(2^(n-1)-2)*2 ;为什么要减掉2呢,因为要排除全部都是1或4的情况。
3、如果前n-1个不是,但是加上1或4后就是了,显然第n-1个也是1或4,这时候我们就要看前n-2个了,显然前n-2个可以是1,2,3,4中的任意一个,既 4^n-2,但是我们要排除掉全部都是由1,4组成的,既 2^n-2。这样递推公式是不是出来了呢?
F[n]=F[n-1]X4+2n-4+(4n-2-2^n-2)X2;
公式真的是这样吗?编辑运行一看,错了。问题出在哪了?
4、冥思苦想了许久发现,哦!!!,原来加重了,要是第n-2个是以1、4结尾呢?然后第n-1个也是1、4。那么与我们第三提出来的前n-1不是正确的排列相矛盾;
那么我们就再加一个变量a[n]表示第n个一1、4结尾的正确排序数目;
那么我们再看看递推公式F[n]=F[n-1]*4+2n-4+2*4n-2-2^n-1-a[n-1];
ac 代码如下:
#include<stdio.h>
int main()
{
long long sum,a[32],f[32],s;
int i;
f[2]=0;f[3]=8;//表示总的钥匙数
a[2]=0;a[3]=4;//表示以第n个以1、4结尾的数目
sum=8;//sum表示2的n-1次方
s = 16;//s表示4的n-2次方
for(i=4;i<=31;i++)
{
f[i]=f[i-1]*4+sum*2-4+(2*s-sum)-a[i-1];
a[i] = 2*f[i-1]+(2*s-sum)-a[i-1];//更新以1、4结尾的钥匙数目
sum*=2;
s*=4;
}
for(i=2;i<=31;i++) printf("N=%d: %lld\n",i,f[i]);
}