高精度小数(10分)
题目内容:
由于计算机内部表达方式的限制,浮点运算都有精度问题,为了得到高精度的计算结果,就需要自己设计实现方法。
(0,1)之间的任何浮点数都可以表达为两个正整数的商,为了表达这样两个数的商,可以将相除的结果以多个整数来表示,每个整数表示结果的一位。即商的第一位用一个整数来表示,第二位用另一个整数来表示,以此类推,就可以输出一个高精度的除法结果了。
如16/19的结果0.8421052631…就可以依次输出8、4、2、1、0、5、2、6、3、1…。
而除法的过程,则可以模仿人工列竖式做除法的方式,先将被除数乘以10,得到一位商以后,将余数乘以10作为下一轮计算的被除数:
160/19->8余8 80/19->4余4 ...
当某次余数为0时,则表明除尽。
现在,请写一个程序,输入一个分数,计算出它的小数形式。无论是否可以除尽,输出最多小数点后200位。
输入格式:
形如 a/b的两个数,其中10<=a<b<100
。也就是说,这个小数一定是小于1的正数。
提示:输入是带着两个数中间的“/”的,所以scanf应采用“%d/%d”这样的输入格式。
输出格式:
形如0.xxxxxxxxx
的小数,小数点后最多200位。输出结束的时候要带着回车换行。如果a/b是一个有限不循环小数,则输出完所有的有效位就可以了,不需要再输出后面的0