1. 二维梯度晶体模块界面
图1.1 二维梯度模块界面
2. 输入参数说明
(1) 长方体尺寸参数[Box Size],矩形大小;
(2) 分布方式[Distribution Method],可选项①Ramp, ②Pow2, ③UDF;
(3) 尺寸限制[Size Limit],最小/最大尺寸限制或文件路径;
(4) 实体晶界厚度参数[Gap,默认0: 为不生成实体晶界];
(5) 是否为每一个晶粒创建单独的Set[Cell Set];
3. 常用UDF分布代码
3.1 自带Ramp分布
插件自带的Ramp选项表示从上至下晶粒尺寸线性变化,具体实现代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
yMin, yMax = 0.0, 50.0
sizeLimit = [2.0, 6.0]
k = (sizeLimit[1] - sizeLimit[0]) / (yMax - yMin)
size = k * (y - yMin) + sizeLimit[0]
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 25.0, 0.0))
使用上面代码生成的模型:
图1.2 二维Ramp分布梯度模型
3.2 自带Pow2分布
插件自带的Pow2选项表示从上至下晶粒尺寸平方变化,具体实现代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
yMin, yMax = 0.0, 50.0
sizeLimit = [2.0, 6.0]
k = (sizeLimit[1] - sizeLimit[0]) / (yMax - yMin)**2
size = k * (y - yMin) ** 2 + sizeLimit[0]
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 25.0, 0.0))
使用上面代码生成的模型:
图1.2 二维Pow2分布梯度模型
3.3 中间渐变分布
中间渐变分布是指晶粒尺寸从模型的中间向两端线性变化,具体实现代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
yMin, yMax = 0.0, 50.0
sizeLimit = [1.0, 4.0]
yMid = (0.5*(yMax - yMin) + yMin)
k = 2.0*(sizeLimit[0] - sizeLimit[1]) / (yMax - yMin)
size = k * abs(y - yMid) + sizeLimit[1]
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 25.0, 0.0))
使用上面代码生成的模型:
图1.3 二维中间渐变分布梯度模型
3.4 辐射渐变分布1
辐射渐变分布是指晶粒尺寸沿中心点向四周渐变,具体实现代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
# center point
xc = 25.0
yc = 25.0
zc = 0.0
initSize = 0.25 # the grain size of center point
incrRatio = 0.15 # the rate of increase in size per unit length
# linear growth: initSize + incrRatio * sqrt((x - xc)^2 + (y - yc)^2 + (z - zc)^2)
dist = math.sqrt((x - xc)**2 + (y - yc)**2 + (z - zc)**2)
incrSize = incrRatio * dist
size = initSize + incrSize
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 0.0, 0.0))
使用上面代码生成的模型:
图1.4 二维辐射分布梯度模型
3.5 辐射渐变分布2
将3.4节代码中的中心点位置调整到Box的一个角点上,可得到另一种辐射分布,调整后的代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
# center point
xc = 0.0
yc = 0.0
zc = 0.0
initSize = 0.25 # the grain size of center point
incrRatio = 0.1 # the rate of increase in size per unit length
# linear growth: initSize + incrRatio * sqrt((x - xc)^2 + (y - yc)^2 + (z - zc)^2)
dist = math.sqrt((x - xc)**2 + (y - yc)**2 + (z - zc)**2)
incrSize = incrRatio * dist
size = initSize + incrSize
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 0.0, 0.0))
使用上面代码生成的模型:
图1.5 二维辐射分布梯度模型
3.6 辐射渐变分布3
将3.4节代码中的中心点位置调整到Box的底边的中点上,可得到另一种辐射分布,调整后的代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
# center point
xc = 25.0
yc = 0.0
zc = 0.0
initSize = 0.25 # the grain size of center point
incrRatio = 0.1 # the rate of increase in size per unit length
# linear growth: initSize + incrRatio * sqrt((x - xc)^2 + (y - yc)^2 + (z - zc)^2)
dist = math.sqrt((x - xc)**2 + (y - yc)**2 + (z - zc)**2)
incrSize = incrRatio * dist
size = initSize + incrSize
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 0.0, 0.0))
使用上面代码生成的模型:
图1.6 二维辐射分布梯度模型
3.7 辐射叠加分布
将3.4节代码中的中心点位置调整到Box的4个角点和中心点上,晶粒尺寸取5个辐射分布场的最小值,可得到辐射叠加分布,调整后的代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
# center point
points = [[0.0, 0.0, 0.0],
[50.0, 0.0, 0.0],
[0.0, 50.0, 0.0],
[50.0, 50.0, 0.0],
[25.0, 25.0, 0.0]]
initSize = 0.25 # the grain size of center point
incrRatio = 0.15 # the rate of increase in size per unit length
allSize = []
for p in points:
# linear growth: initSize + incrRatio * sqrt((x - xc)^2 + (y - yc)^2 + (z - zc)^2)
dist = math.sqrt((x - p[0])**2 + (y - p[1])**2 + (z - p[2])**2)
incrSize = incrRatio * dist
allSize.append(initSize + incrSize)
size = min(allSize)
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 0.0, 0.0))
使用上面代码生成的模型:
图1.7 二维辐射叠加分布梯度模型
3.8 分层分布
可以使用梯度模块来创建分层模型(建议使用插件自带的分层模块,生成速度和精度都高于梯度模块),示例创建双层模型,分为上下两层,具体代码如下:
#coding:utf-8
import math
def getSize(x, y, z):
yMid = 25.0
sizeLimit = [2.0, 4.0]
if y > yMid:
size = sizeLimit[1]
else:
size = sizeLimit[0]
return max(size, 1E-5)
if __name__ == "__main__":
print(getSize(0.0, 25.0, 0.0))
使用上面代码生成的模型:
图1.8 二维分层分布梯度模型