pytorch task05 卷积神经网络

本文详细介绍了卷积神经网络的基础,包括二维卷积、填充和步幅、多输入通道和多输出通道的概念。此外,文章还探讨了卷积层与全连接层的区别以及池化的功能。最后,文章列举了经典卷积神经网络模型,如 LeNet-5、AlexNet、VGG、GoogLeNet 和 ResNet,分析了它们的特点和解决的退化问题。
摘要由CSDN通过智能技术生成

pytorch task05 卷积神经网络

1.卷积神经网络基础

1.1二维卷积层

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

Image Name
图1 二维互相关运算

*特征图与感受野*

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xx的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。将图中形状为2×22×2的输出记为YY,将YY与另一个形状为2×22×2的核数组做互相关运算,输出单个元素zz。那么,zz在YY上的感受野包括YY的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

1.2填充和步幅

*填充*(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里在原输入高和宽的两侧分别添加了值为0的元素。

Image Name

图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算

如果原输入的高和宽是nhnh和nwnw,卷积核的高和宽是khkh和kwkw,在高的两侧一共填充phph行,在宽的两侧一共填充pwpw列,则输出形状为:

(nh+ph−kh+1)×(nw+pw−kw+1)(nh+ph−kh+1)×(nw+pw−kw+1)

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是*步幅*(stride)。此前使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

Image Name

图3 高和宽上步幅分别为3和2的二维互相关运算

一般来说,当高上步幅为shsh,宽上步幅为swsw时,输出形状为:

$$

\lfloor(n_h+p_h-k_h+s_h)/s_h\rfloor \times \lfloor(n_w+p_w-k_w+s_w)/s_w\rfloor

$$

如果ph=kh−1ph=kh−1,pw=kw−1pw=kw−1,那么输出形状将简化为⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是(nh/sh)×(nw/sw)(nh/sh)×(nw/sw)。

当ph=pw=pph=pw=p时,称填充为pp;当sh=sw=ssh=sw=s时,称步幅为ss。

在卷积神经网络中使用奇数高宽的核,比如3×33×3,5×55×5的卷积核,对于高度(或宽度)为大小为2k+12k+1的核,令步幅为1,在高(或宽)两侧选择大小为kk的填充,便可保持输入与输出尺寸相同。

1.3多输入通道和多输出通道

多输入通道

卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

Image Name

图4 含2个输入通道的互相关计算

假设输入数据的通道数为cici,卷积核形状为kh×kwkh×kw,为每个输入通道各分配一个形状为kh×kwkh×kw的核数组,将cici个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。把cici个核数组在通道维上连结,即得到一个形状为ci×kh×kwci×kh×kw的卷积核。

多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cici和coco,高和宽分别为khkh和kwkw。如果希望得到含多个通道的输出,可以为每个输出通道分别创建形状为ci×kh×kwci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kwco×ci×kh×kw。

对于输出通道的卷积核,提供这样一种理解,一个ci×kh×kwci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,需要有多个这样的ci×kh×kwci×kh×kw的核数组,不同的核数组提取的是不同的特征。

1x1卷积层

最后讨论形状为1×11×1的卷积核,通常称这样的卷积运算为1×11×1卷积,称包含这种卷积核的卷积层为1×11×1卷积层。图5展示了使用输入通道数为3、输出通道数为2的1×11×1卷积核的互相关计算。

Image Name

图5 1x1卷积核的互相关计算。输入和输出具有相同的高和宽

1×11×1卷积核可在不改变高宽的情况下,调整通道数。1×11×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×11×1卷积层的作用与全连接层等价。

1.4卷积层与全连接层的对比

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(ci,co,h,w)(ci,co,h,w)的卷积核的参数量是ci×co×h×wci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c1,h1,w1)(c1,h1,w1)和(c2,h2,w2)(c2,h2,w2),如果要用全连接层进行连接,参数数量就是c1×c2×h1×w1×h2×w2c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

1.5池化

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2×22×2的最大池化。

Image Name

图6 池化窗口形状为 2 x 2 的最大池化

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×qp×q的池化层称为p×qp×q池化层,其中的池化运算叫作p×qp×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

2 经典模型

LeNet-5

1998, Yann LeCun 的 LeNet5 官网

卷积神经网路的开山之作,麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件

  • 用卷积提取空间特征;
  • 由空间平均得到子样本;
  • 用 tanh 或 sigmoid 得到非线性;
  • 用 multi-layer neural network(MLP)作为最终分类器;
  • 层层之间用稀疏的连接矩阵,以避免大的计算成本。

输入:图像Size为3232。这要比mnist数据库中最大的字母(2828)还大。这样做的目的是希望潜在的明显特征,如笔画断续、角点能够出现在最高层特征监测子感受野的中心。

输出:10个类别,分别为0-9数字的概率

  1. C1层是一个卷积层,有6个卷积核(提取6种局部特征),核大小为5 * 5
  2. S2层是pooling层,下采样(区域:2 * 2 )降低网络训练参数及模型的过拟合程度。
  3. C3层是第二个卷积层,使用16个卷积核,核大小:5 * 5 提取特征
  4. S4层也是一个pooling层,区域:2*2
  5. C5层是最后一个卷积层,卷积核大小:5 * 5 卷积核种类:120
  6. 最后使用全连接层,将C5的120个特征进行分类,最后输出0-9的概率

一下代码来自官方教程

import torch.nn as nn
class LeNet5(nn.Module):

    def __init__(self):
        super(LeNet5, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120) # 这里论文上写的是conv,官方教程用了线性层
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = LeNet5()
print(net)
LeNet5(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

AlexNet

2012,Alex Krizhevsky
可以算作LeNet的一个更深和更广的版本,可以用来学习更复杂的对象 论文

  • 用rectified linear units(ReLU)得到非线性;
  • 使用 dropout 技巧在训练期间有选择性地忽略单个神经元,来减缓模型的过拟合;
  • 重叠最大池,避免平均池的平均效果;
    Alexnet的每一阶段(含一次卷积主要计算的算作一层)可以分为8层:

在Pytorch的vision包中是包含Alexnet的官方实现的,我们直接使用官方版本看下网络

import torchvision
model = torchvision.models.alexnet(pretrained=False) #我们不下载预训练权重
print(model)
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

VGG

2015,牛津的 VGG。论文

  • 每个卷积层中使用更小的 3×3 filters,并将它们组合成卷积序列
  • 多个3×3卷积序列可以模拟更大的接收场的效果
  • 每次的图像像素缩小一倍,卷积核的数量增加一倍

VGG有很多个版本,也算是比较稳定和经典的model。它的特点也是连续conv多计算量巨大,这里我们以VGG16为例.图片来源
img
VGG清一色用小卷积核,结合作者和自己的观点,这里整理出小卷积核比用大卷积核的优势:

根据作者的观点,input8 -> 3层conv3x3后,output=2,等同于1层conv7x7的结果; input=8 -> 2层conv3x3后,output=2,等同于2层conv5x5的结果

卷积层的参数减少。相比5x5、7x7和11x11的大卷积核,3x3明显地减少了参数量

通过卷积和池化层后,图像的分辨率降低为原来的一半,但是图像的特征增加一倍,这是一个十分规整的操作:
分辨率由输入的224->112->56->28->14->7,
特征从原始的RGB3个通道-> 64 ->128 -> 256 -> 512

这为后面的网络提供了一个标准,我们依旧使用Pytorch官方实现版本来查看

import torchvision
model = torchvision.models.vgg16(pretrained=False) #我们不下载预训练权重
print(model)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace)
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

GoogLeNet (Inception)

2014,Google Christian Szegedy 论文

  • 使用1×1卷积块(NiN)来减少特征数量,这通常被称为“瓶颈”,可以减少深层神经网络的计算负担。
  • 每个池化层之前,增加 feature maps,增加每一层的宽度来增多特征的组合性

googlenet最大的特点就是包含若干个inception模块,所以有时候也称作 inception net
googlenet虽然层数要比VGG多很多,但是由于inception的设计,计算速度方面要快很多。

不要被这个图吓到,其实原理很简单

Inception架构的主要思想是找出如何让已有的稠密组件接近与覆盖卷积视觉网络中的最佳局部稀疏结构。现在需要找出最优的局部构造,并且重复 几次。之前的一篇文献提出一个层与层的结构,在最后一层进行相关性统计,将高相关性的聚集到一起。这些聚类构成下一层的单元,且与上一层单元连接。假设前 面层的每个单元对应于输入图像的某些区域,这些单元被分为滤波器组。在接近输入层的低层中,相关单元集中在某些局部区域,最终得到在单个区域中的大量聚类,在最后一层通过1x1的卷积覆盖。

上面的话听起来很生硬,其实解释起来很简单:每一模块我们都是用若干个不同的特征提取方式,例如 3x3卷积,5x5卷积,1x1的卷积,pooling等,都计算一下,最后再把这些结果通过Filter Concat来进行连接,找到这里面作用最大的。而网络里面包含了许多这样的模块,这样不用我们人为去判断哪个特征提取方式好,网络会自己解决(是不是有点像AUTO ML),在Pytorch中实现了InceptionA-E,还有InceptionAUX 模块。

# inception_v3需要scipy,所以没有安装的话pip install scipy 一下
import torchvision
model = torchvision.models.inception_v3(pretrained=False) #我们不下载预训练权重
print(model)
Inception3(
  (Conv2d_1a_3x3): BasicConv2d(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)
    (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
  )
  (Conv2d_2a_3x3): BasicConv2d(
    (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
  )
  (Conv2d_2b_3x3): BasicConv2d(
    (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
  )
  (Conv2d_3b_1x1): BasicConv2d(
    (conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
  )
  (Conv2d_4a_3x3): BasicConv2d(
    (conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
  )
  (Mixed_5b): InceptionA(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(192, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_5c): InceptionA(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_5d): InceptionA(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_1): BasicConv2d(
      (conv): Conv2d(288, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(48, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch5x5_2): BasicConv2d(
      (conv): Conv2d(48, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_6a): InceptionB(
    (branch3x3): BasicConv2d(
      (conv): Conv2d(288, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(288, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3): BasicConv2d(
      (conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), bias=False)
      (bn): BatchNorm2d(96, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_6b): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(128, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(128, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_6c): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_6d): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(160, 160, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(160, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(160, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_6e): InceptionC(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_4): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7dbl_5): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (AuxLogits): InceptionAux(
    (conv0): BasicConv2d(
      (conv): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (conv1): BasicConv2d(
      (conv): Conv2d(128, 768, kernel_size=(5, 5), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(768, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (fc): Linear(in_features=768, out_features=1000, bias=True)
  )
  (Mixed_7a): InceptionD(
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_2): BasicConv2d(
      (conv): Conv2d(192, 320, kernel_size=(3, 3), stride=(2, 2), bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7x3_1): BasicConv2d(
      (conv): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7x3_2): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7x3_3): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch7x7x3_4): BasicConv2d(
      (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_7b): InceptionE(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(1280, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_2a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_2b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(1280, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(1280, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (Mixed_7c): InceptionE(
    (branch1x1): BasicConv2d(
      (conv): Conv2d(2048, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(320, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_1): BasicConv2d(
      (conv): Conv2d(2048, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_2a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3_2b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_1): BasicConv2d(
      (conv): Conv2d(2048, 448, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(448, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_2): BasicConv2d(
      (conv): Conv2d(448, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3a): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch3x3dbl_3b): BasicConv2d(
      (conv): Conv2d(384, 384, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)
      (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
    (branch_pool): BasicConv2d(
      (conv): Conv2d(2048, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (fc): Linear(in_features=2048, out_features=1000, bias=True)

ResNet

2015,Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 论文
Kaiming He 何凯明(音译)这个大神大家一定要记住,现在很多论文都有他参与(mask rcnn, focal loss),Jian Sun孙剑老师就不用说了,现在旷世科技的首席科学家
刚才的googlenet已经很深了,ResNet可以做到更深,通过残差计算,可以训练超过1000层的网络,俗称跳连接

退化问题

网络层数增加,但是在训练集上的准确率却饱和甚至下降了。这个不能解释为overfitting,因为overfit应该表现为在训练集上表现更好才对。这个就是网络退化的问题,退化问题说明了深度网络不能很简单地被很好地优化

残差网络的解决办法

深层网络的后面那些层是恒等映射,那么模型就退化为一个浅层网络。那现在要解决的就是学习恒等映射函数了。让一些层去拟合一个潜在的恒等映射函数H(x) = x,比较困难。如果把网络设计为H(x) = F(x) + x。我们可以转换为学习一个残差函数F(x) = H(x) - x. 只要F(x)=0,就构成了一个恒等映射H(x) = x. 而且,拟合残差肯定更加容易。

以上又很不好理解,继续解释下,先看图:

我们在激活函数前将上一层(或几层)的输出与本层计算的输出相加,将求和的结果输入到激活函数中做为本层的输出,引入残差后的映射对输出的变化更敏感,其实就是看本层相对前几层是否有大的变化,相当于是一个差分放大器的作用。图中的曲线就是残差中的shoutcut,他将前一层的结果直接连接到了本层,也就是俗称的跳连接。

我们以经典的resnet18来看一下网络结构

import torchvision
model = torchvision.models.resnet18(pretrained=False) #我们不下载预训练权重
print(model)
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )pypythpn
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

那么我们该如何选择网络呢?
以上表格可以清楚的看到准确率和计算量之间的对比。我的建议是,小型图片分类任务,resnet18基本上已经可以了,如果真对准确度要求比较高,再选其他更好的网络架构。

12, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)pypythpn
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Linear(in_features=512, out_features=1000, bias=True)
)


那么我们该如何选择网络呢?
以上表格可以清楚的看到准确率和计算量之间的对比。我的建议是,小型图片分类任务,resnet18基本上已经可以了,如果真对准确度要求比较高,再选其他更好的网络架构。

另外有句俗话叫:穷人只能alexnet,富人才用Res
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值