问题描述
在数列 a[1], a[2], …, a[n] 中,如果对于下标 i, j, k 满足 0<i<j<k<n+1 且 a[i]<a[j]<a[k],则称 a[i], a[j], a[k] 为一组递增三元组,a[j]为递增三元组的中心。
给定一个数列,请问数列中有多少个元素可能是递增三元组的中心。
输入格式
输入的第一行包含一个整数 n。
第二行包含 n 个整数 a[1], a[2], …, a[n],相邻的整数间用空格分隔,表示给定的数列。
输出格式
输出一行包含一个整数,表示答案。
样例输入
5
1 2 5 3 5
样例输出
2
样例说明
a[2] 和 a[4] 可能是三元组的中心。
评测用例规模与约定
对于 50% 的评测用例,2 <= n <= 100,0 <= 数列中的数 <= 1000。
对于所有评测用例,2 <= n <= 1000,0 <= 数列中的数 <= 10000。
#include<iostream>
using namespace std;
const int N = 1001;
int main()
{
int data[N], n, i, sum, j, k;
sum = 0;
cin >> n;
for(i = 0; i < n; i++ )
{
cin >> data[i];
}
for(i = 0; i < n-2; i++ )
{
for(j = i+1; j < n-1; j++ )
{
for(k = j+1; k < n; k++ )
{
if(data[i]<data[j] && data[j]<data[k])
{
sum ++;
data[j] = 0;
break;
}
}
}
}
cout << sum;
return 0;
}