蓝桥杯 - 算法训练 寂寞的数 C语言实现

算法训练 寂寞的数 
题目如下:

问题描述
  道德经曰:一生二,二生三,三生万物。
  对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28, d(1481)=1481+1+4+8+1=1495。
  因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))....例如,从33开始的递增序列为:
  33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
  我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。
输入格式
  一行,一个正整数n。
输出格式
  按照升序输出小于n的所有寂寞的数字,每行一个。
样例输入
40
样例输出
1
3
5
7
9
20
31
数据规模和约定
  n<=10000

分析:
题目说得很清晰(蓝桥杯的题少有),数据规模也不大,直接暴力。

代码在此:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

#define SIZE 10000

int main () {
	
	int num[SIZE];	//4 * 10000 / 10^6 = 0.04M(约) 
	int i,j;
	int n;
	
	scanf("%d",&n);
	
	for(i = 0; i < n; i ++){
		num[i] = 0;
	}
	
	int len;
	char str[4];
	int temp = 0;
	for(i = 0; i < n; i ++){
		itoa(i,str,10);
		len = strlen(str);
		temp += i;
		for(j = 0; j < len; j ++){
			temp += str[j]-48;
		}
		if(temp < n){
			num[temp] = 1; 
		}
		temp = 0;
	}
	
	for(i = 0; i < n; i ++){
		if(num[i] == 0){
			printf("%d\n",i);
		}
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值