算法训练 寂寞的数
题目如下:
问题描述
道德经曰:一生二,二生三,三生万物。
对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28, d(1481)=1481+1+4+8+1=1495。
因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))....例如,从33开始的递增序列为:
33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。
对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28, d(1481)=1481+1+4+8+1=1495。
因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))....例如,从33开始的递增序列为:
33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。
输入格式
一行,一个正整数n。
输出格式
按照升序输出小于n的所有寂寞的数字,每行一个。
样例输入
40
样例输出
1
3
5
7
9
20
31
3
5
7
9
20
31
数据规模和约定
n<=10000
分析:
题目说得很清晰(蓝桥杯的题少有),数据规模也不大,直接暴力。
代码在此:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define SIZE 10000
int main () {
int num[SIZE]; //4 * 10000 / 10^6 = 0.04M(约)
int i,j;
int n;
scanf("%d",&n);
for(i = 0; i < n; i ++){
num[i] = 0;
}
int len;
char str[4];
int temp = 0;
for(i = 0; i < n; i ++){
itoa(i,str,10);
len = strlen(str);
temp += i;
for(j = 0; j < len; j ++){
temp += str[j]-48;
}
if(temp < n){
num[temp] = 1;
}
temp = 0;
}
for(i = 0; i < n; i ++){
if(num[i] == 0){
printf("%d\n",i);
}
}
return 0;
}