1.缓存穿透
1.1产生的背景
缓存穿透是指使用不存在的key进行大量的高并发查询,导致缓存无法命中,每次请求都要都要穿透到后端数据库查询,使得数据库的压力非常大,甚至导致数据库服务压死;
1.2解决方案
- 接口层实现api限流、用户授权、id检查等 黑名单和白名单;
- 从缓存和数据库都取不到数据的话,一样将数据库空值放入缓存中,设置30s有效期避免使用同一个id对数据库攻击压力大;
- 使用布隆过滤器
2.缓存击穿
2.1产生的背景
在高并发的情况下,当一个缓存key过期时,因为访问该key请求较大,多个请求同时发现缓存过期,因此对多个请求同时数据库查询、同时向Redis写入缓存数据,这样会导致数据库的压力非常大;
2.2解决方案
- 使用分布式锁
保证在分布式情况下,使用分布式锁保证对于每个key同时只允许只有一个线程查询到后端服务,其他没有获取到锁的权 限,只需要等待即可;这种高并发压力直接转移到分布式锁上,对分布式锁的压力非常大。 - 使用本地锁
使用本地锁与分布式锁机制一样,只不过分布式锁适应于服务集群、本地锁仅限于单个服务使用。 - 软过过期
设置热点数据永不过期或者异步延长过期时间;
3.缓存雪崩
3.1产生的背景
缓存雪崩指缓存服务器重启或者大量的缓存集中在某个时间段失效,突然给数据库产生了巨大的压力,甚至击垮数据库的情况。
3.2解决方案
解决思路:对不用的数据使用不同的失效时间,加上随机数
总结
穿透:高并发情况,下查询一个不存在key的情况,每次都要穿透查询到数据库,导致数据库压力大
击穿:高并发情况,单个key失效的情况下,同时查询数据库并向redis写入缓存数据,导致数据库压力大
雪崩:多个key同时失效情况