Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
#include<iostream>
using namespace std;
int f(int A, int B,int n)
{
if(n==1 || n==2)
return 1;
else
return (A*f(A,B,n-1)+B*f(A,B,n-2))%7; //函数的应用
}
int main()
{
int A,B,n;
while(cin>>A>>B>>n)
{
if(A==0&&B==0&&n==0)
{
break;
}
else
{
cout<<f(A,B,n)<<endl;
}
}
return 0;
}
运行截图:
运用函数的部分借鉴了一下别人的思路,这个思路类似于求阶乘的递归调用方法,
long fac(int n)
{
long c;
if(n==1) c=1;
else c=n*fac(n-1); //递归部分,转化为规模减小1后的递归函数调用
return c;
}
如有错误,请大神指点。